CHAPTER 2

EXPONENTS AND POWERS

More Questions for Practice

- **1.** Simplify:
- (i) $\left(\frac{x^{-1}y^2}{z^{-3}}\right)^3$ (ii) $\frac{x^0 y^0}{x^0 + y^0}$ (iii) $(x^2y^3z^{-2})^0$ (iv) $\frac{x^{-2}}{x^2}$ 2. Simplify: $\frac{4^{-2} \times 2^2 \times 2}{8 \times 8^{-2}}$
- **3.** Simplify:

(i)
$$(2^{-1})^4 \times 3^4 \div (3^4 \times 8 \div 9)^2$$
 (ii) $(\frac{64}{125})^{-1} \div \frac{1}{(\frac{625}{256})^{-1}} + (\frac{25}{64})^0$

4. Show that:

(i)
$$\left(\frac{x^a}{x^b}\right)^{a+b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a} = 1$$

5. Prove that:

(i)
$$\frac{1}{2}(2^3)^2 \div \left[2 \div (2 \div 2^3)^2\right] = 1$$
 (ii) $(x^{-1} + y^{-1})^{-1} = \frac{xy}{x+y}$

6. Simplify:

(i)
$$\frac{2^{-n} \cdot 8^{2n+1} \cdot 16^{2n}}{4^{3n}}$$
 (ii) $\frac{a^{7+2n} \cdot (a^2)^{3n+2}}{(a^4)^{2n+3}}$ (iii) $\frac{p^{2n+3} \cdot p^{(2n+1)(n+2)}}{(p^3)^{2n+1} \cdot p^{n(2n+1)}}$

- 7. Solve for $p: 3^{5p} = 3^{3p} \div (81)^{-1}$
- **8.** Find the value of *n* if

$$6^{-1} \times 3^2 \times 2^2 \div (7^2 \div 7^3) - \frac{10^3}{10^2} = 2^n$$

9. Solve for
$$x: 3^{x-1} = (9)^{x+3}$$

10. $\left(\frac{-5}{6}\right)^3$ when divided by $\left(\frac{-5}{6}\right)^7$ becomes $\left(\frac{-5}{6}\right)^{3+x}$. Find the value of x .
11. Solve: $\left(\frac{3}{7}\right)^{2x+5} = \frac{16807}{243}$.
12. Simplify: $\frac{3^{n+1} \times 3^{(n-1)(n+1)}}{3^{n(n-1)} \times 9^{n+1}}$.

- **13.** If $(a^{-3})^2 (b^4)^{-1} (c^2)^3 = a^x b^y c^{-z}$ find *x*, *y* and *z*.
- **14.** Simplify: $(x^3 \cdot y^{-3})^2 \div (xy^{-2})$
- **15.** If $[a^4 \div (a^2 \times a^{-4})]^2 = a^k$, then find *k*.
- **16.** Evaluate the following by *prime factorisation*:

sultan chand

(*i*)
$$\sqrt{\frac{441}{196}}$$
 (*ii*) $\sqrt{\frac{3844}{196}}$ (*iii*) $\sqrt{38\frac{11}{25}}$

- **17.** Find the square roots of the following numbers by the *division method*:
 - (*i*) 531441 (*ii*) 390625 (*iii*) 62504836
- **18.** (*i*) Find the smallest 3-digit number, which is a perfect square.
 - (*ii*) Find the least number of 5-digits, which is a perfect square.
- **19.** (*i*) Find the greatest 3-digit number, which is a perfect square.
 - (*ii*) Find the greatest number of 6-digits, which is a perfect square.
- 20. Find the square roots of the following decimals (correct up to three places of decimal):(*i*) 0.675 (*ii*) 473.56
- **21.** Find the smallest number by which 557568 must be divided so that it becomes a perfect square. Also, find the number whose square is the resulting number.
- 22. Find the smallest number of four digits which is a perfect square.
- 23. Find the greatest number of four digits which is a perfect square.
- 24. Find the square root of each of the following numbers in decimal form:(*i*) 0.00053361 (*ii*) 176.252176
- 25. What is the fraction, which multiplied by itself gives 251953.8025?
- **26.** Evaluate $\sqrt{813604}$ and hence find the value of

sultan chand

- (*i*) $\sqrt{8136.04} \sqrt{81.3604}$ (*ii*) $\sqrt{81.3604} + \sqrt{0.813604}$
- **27.** Evaluate:

(*i*)
$$\frac{\sqrt{0.2304} + \sqrt{0.1764}}{\sqrt{0.2304} - \sqrt{0.1764}}$$
 (*ii*) $\frac{\sqrt{0.4761} + \sqrt{0.3969}}{\sqrt{0.4761} - \sqrt{0.3969}}$

- **28.** A society collected ₹ 92.16. Each member contributed as many paise as there were members. How many members were there and how much did each contribute?
- **29.** A General wishing to arrange his men, who were 335250 in number in the form of a square, found that there were 9 men left over. How many were there in each row?
- **30.** Find the length of the diagonal of a square whose perimeter is equal to the perimeter of an equilateral triangle of side 4 cm, correct to two places of decimal.

Exponents and Powers

- **31.** The area of a square field is 5184 sq m. A rectangular field, with its length twice its breadth, has its perimeter equal to the perimeter of the square field. Find the area of the rectangular field.
- **32.** The area of a square field is 1476225 sq m. A motorist travels along its boundary at 36 km/h. In how much time, will he return to the starting point?
- **33.** Find the perimeter of a square, with its area equal to the area of a rectangle of dimensions 270 m by 85 m, correct up to two places of the decimal.
- **34.** Find the *cube* of each of the following numbers:

(i)
$$\frac{-8}{11}$$
 (ii) $3\frac{1}{4}$ (iii) 3.1

- **35.** Find the *cube root* of the following numbers, using *prime factorisation method*:
 - (*i*) 42875 (*ii*) 74088
- **36.** Find the *cube root* of:
 - (*i*) 1157625 (*ii*) 3723875
- 37. Find the square root of 20, correct to 2 places of decimal.
- 38. Using prime factorisation method, find the cube root of 1728.
- **39.** What is the smallest number by which 16384 must be divided so that the quotient is a perfect cube? Also, find the cube root of the quotient so obtained.
- **40.** What is the smallest number which when multiplied with 2500 will make the product a perfect cube? Find the cube root of the product.

culton shon

ANSWEDS			
ANSWERS			
1. (<i>i</i>) $x^{-3}y^{6}z^{9}$	<i>(ii)</i> 0	<i>(iii)</i> 1	$(iv) \frac{1}{x^4}$
2. 4	3. (<i>i</i>) $\frac{1}{1024}$	(<i>ii</i>) $1\frac{4}{5}$	
6. (<i>i</i>) 2^{7n+3}	(<i>ii</i>) $\frac{1}{a}$	(<i>iii</i>) p^2	
7. 2	8. 5	9. –7	10. –7
11. –5	12. $\frac{1}{9}$	13. $x = -6$, $y = -4$ and z	z = -6
14. $\frac{x^5}{y^4}$	15. <i>k</i> = 12.		
16. (<i>i</i>) $\frac{3}{2}$	(<i>ii</i>) $\frac{31}{7}$	(<i>iii</i>) $6\frac{1}{5}$	
17. (<i>i</i>) 729	<i>(ii)</i> 625	(<i>iii</i>) 7906	
18. (<i>i</i>) 100	(<i>ii</i>) 10000	19. (<i>i</i>) 961	(<i>ii</i>) 998001
20. (<i>i</i>) 0.822	(<i>ii</i>) 21.761	21. 2; 528	22. 1024
23. 9801 tan chai	24. (<i>i</i>) 0.0231	(ii) 13.276	

ICSE Serv^{Corricultum} Fundamentals of Mathematics—VIII

