

1. In Fig. 14.1, ABCD is a parallelogram, EF \parallel AC, \angle EDA = 28° and \angle CDF = 24°. Calculate:

- 2. PQRS is a rhombus and the diagonals meet at O (See Fig. 14.2). Show that $PS^2 + SR^2 + RQ^2 + QP^2 = 4 SO^2 + 4 PO^2$.
- **3.** In Fig. 14.3, ABCD is a parallelogram, X is the mid-point of DO and Y is the mid-point of BO. Prove that AXCY is a parallelogram.

- 4. In Fig. 14.4, PQRS is a parallelogram. PT is parallel to UR. Prove that
 (*i*) ST = QU
 (*ii*) PTRU is a parallelogram.
- **5.** The medians BE and CF of a \triangle ABC intersect at G. Show that \triangle AGB, \triangle BGC and \triangle AGC have equal areas.
- 6. In Fig. 14.5, X, Y, Z are the mid-points of the sides QR, RP and PQ respectively of Δ PQR. Show that QXYZ is a \parallel gm whose area is half that of Δ PQR. Also, show that

$$ar(\Delta XYZ) = \frac{1}{4} ar(\Delta PQR)$$

chan

- 7. A quadrilateral is bisected by both its diagonals. Prove that it is a parallelogram.
- 8. Show that the area of a rhombus is half the product of the lengths of its diagonals.
- 9. In a parallelogram ABCD, AB = 10 cm, the altitudes corresponding to sides AB and AD are of lengths 7 cm and 8 cm respectively. Find the length of AD.

			Fig.	. 14.8
 (<i>i</i>) 24° 8.75 cm 	(<i>ii</i>) 28°	(<i>iii</i>) 128° Chan		
11. (<i>i</i>) 75°	(<i>ii</i>) 15°	(<i>iii</i>) 225°.		

