SOLUTIONS TO COMPETENCY BASED PRACTICE QUESTIONS # Unit I: Pure Arithmetic (Chapter 1) ### I: Multiple Choice Questions (1 mark each) 1. (c) We have, $$(\sqrt{x^3})^{\frac{2}{3}} = \left\{ (x^3)^{\frac{1}{2}} \right\}^{\frac{2}{3}}$$ $$= \left\{ (x)^{\frac{3}{2}} \right\}^{\frac{2}{3}} = (x)^{\frac{3}{2} \times \frac{2}{3}} = x$$ 2. (b) The surds $\sqrt[3]{2}$, $\sqrt[4]{2}$ and $\sqrt[12]{32}$ have orders respectively 3, 4 and 12; whose L.C.M. is 12. Now, $$\sqrt[3]{2} = \sqrt[3 \times 4]{2^4} = \sqrt[12]{16}$$, and $\sqrt[4]{2} = \sqrt[4 \times 3]{2^3} = \sqrt[12]{8}$. Thus, the given product = $$\sqrt[3]{2} \times \sqrt[4]{2} \times \sqrt[12]{32} = \sqrt[12]{16} \times \sqrt[12]{8} \times \sqrt[12]{32}$$ = $\sqrt[12]{16 \times 8 \times 32} = \sqrt[12]{2^4 \times 2^3 \times 2^5}$ = $\sqrt[12]{2^{4+3+5}} = \sqrt[12]{2^{12}} = 2$. **3.** (c) Statement 1 is true: We have, $$\sqrt[3]{4} = \sqrt[3 4]{4^4} = \sqrt[12]{256}$$ and $\sqrt[4]{5} = \sqrt[4 3]{5^3} = \sqrt[12]{125}$ Since $\sqrt[12]{125} < \sqrt[12]{256} \implies \sqrt[4]{5} < \sqrt[3]{4}$ \therefore Of the surds $\sqrt[3]{4}$ and $\sqrt[4]{5}$, $\sqrt[4]{5}$ is the smaller one. Therefore, Statement 1 is true. Statement 2 is true: L.C.M. of 2, 3 and 5 is 30. Now, $$\sqrt[3]{2} = (2)^{\frac{1}{3}} = (2^{10})^{\frac{1}{30}} = \sqrt[30]{2^{10}};$$ $$\sqrt[5]{4} = (4)^{\frac{1}{5}} = (4^6)^{\frac{1}{30}} = \sqrt[30]{4^6}, \text{ and}$$ $$\sqrt{3} = (3)^{\frac{1}{2}} = (3^{15})^{\frac{1}{30}} = \sqrt[30]{3^{15}}$$ Clearly, $3^{15} > 4^6 > 2^{10}$ $$\Rightarrow \sqrt{3} > \sqrt[5]{4} > \sqrt[3]{2}$$ Therefore, Statement 2 is true. Hence, option (c) is the correct answer. 4. (a) Given, $$a = 2 + \sqrt{3}$$ $\Rightarrow \frac{1}{a} = \frac{1}{2 + \sqrt{3}} = \frac{(2 - \sqrt{3})}{(2 + \sqrt{3})(2 - \sqrt{3})}$ $$= \frac{2 - \sqrt{3}}{4 - 3} = 2 - \sqrt{3}$$ $$\therefore \qquad a - \frac{1}{a} = (2 + \sqrt{3}) - (2 - \sqrt{3}) = 2\sqrt{3}.$$ **5.** (*d*) Let $$x = 0.12\overline{3}$$ or $$x = 0.12333 \dots$$ $$\Rightarrow$$ 100x = 12.333(1) and $$1000x = 123.333...$$...(2) $$1000x - 100x = 111$$ $$\Rightarrow$$ 900x = 111 or $x = \frac{111}{900}$. ### II: Short Answer Questions-1 (3 marks each) **6.** We write 13 as the sum of the squares of two natural numbers: $$13 = 9 + 4 = 3^2 + 2^2$$ On the number line, take OA = 3 units. Draw BA = 2 units, perpendicular to OA. Join OB. By Pythagoras' Theorem, OB = $\sqrt{13}$. Using a compass with centre O and radius OB, draw an arc which intersects the number line at the point C. **7.** We have, $$a = \frac{3 + \sqrt{5}}{2}$$ $$\Rightarrow \frac{1}{a} = \frac{2}{3 + \sqrt{5}}$$ $$= \frac{2}{(3 + \sqrt{5})} \times \frac{(3 - \sqrt{5})}{(3 - \sqrt{5})}$$ $$= \frac{6 - 2\sqrt{5}}{9 - 5} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2}$$ [Rationalising the denominator] Now, $$a + \frac{1}{a} = \frac{3 + \sqrt{5}}{2} + \frac{3 - \sqrt{5}}{2}$$ = $\frac{6}{2} = 3$ $$\therefore \qquad \left(a + \frac{1}{a}\right)^2 = (3)^2$$ $$\Rightarrow \qquad a^2 + \frac{1}{a^2} + 2 = 9$$ or $$a^2 + \frac{1}{a^2} = 9 - 2 = 7$$ Hence, $$a^2 + \frac{1}{a^2} = 7$$. 8. $$\left[5 \left(8^{\frac{1}{3}} + 27^{\frac{1}{3}} \right)^{3} \right]^{\frac{1}{4}} = \left[5 \left((2^{3})^{\frac{1}{3}} + (3^{3})^{\frac{1}{3}} \right)^{3} \right]^{\frac{1}{4}}$$ $$= [5(2+3)^3]^{\frac{1}{4}}$$ $$= [5(5)^3]^{\frac{1}{4}}$$ $$= [5^4]^{\frac{1}{4}} = 5.$$ ### III: Short Answer Questions-2 (4 marks each) 9. We have, $$\frac{4}{3\sqrt{3}-2\sqrt{2}} + \frac{3}{3\sqrt{3}+2\sqrt{2}}$$ $$= \frac{4(3\sqrt{3}+2\sqrt{2})+3(3\sqrt{3}-2\sqrt{2})}{(3\sqrt{3}-2\sqrt{2})(3\sqrt{3}+2\sqrt{2})}$$ $$= \frac{12\sqrt{3}+8\sqrt{2}+9\sqrt{3}-6\sqrt{2}}{27-8}$$ $$= \frac{21\sqrt{3}+2\sqrt{2}}{19} = \frac{21\times1.732+2\times1.414}{19}$$ $$= \frac{36.372+2.828}{19} = \frac{39.2}{19} = 2.063.$$ 10. Here, $\frac{4}{(216)^{-\frac{3}{3}}} + \frac{1}{(256)^{-\frac{3}{4}}} + \frac{2}{(243)^{-\frac{1}{5}}}$ $$= \frac{4}{(6^3)^{-\frac{3}{3}}} + \frac{1}{(4^4)^{-\frac{3}{4}}} + \frac{2}{(3^5)^{-\frac{1}{5}}}$$ $$= \frac{4}{(6)^{-2}} + \frac{1}{(4)^{-3}} + \frac{2}{(3)^{-1}}$$ $$= 4\times(6)^2 + 1\times(4)^3 + 2\times3$$ $$= 4\times36+64+6$$ $$= 144+70=214.$$ ### IV: Long Answer Questions (5 marks each) 11. To express $0.6 \pm 0.\overline{7} \pm 0.4\overline{7}$ in the form $\frac{p}{q}$, we first find the values of recurring decimals $0.\overline{7}$ and $0.4\overline{7}$. Let $x = 0.\overline{7}$ ⇒ $$x = 0.777...$$ ⇒ $10x = 7.777...$ ∴ $10x - x = 7$ ⇒ $9x = 7 \text{ or } x = \frac{7}{9}$ Also, let $y = 0.477$ ⇒ $y = 0.477...$ ⇒ $10y = 4.777...$ ∴ $100y = 47.777...$ ∴ $100y = 43$ ⇒ $90y = 43 \text{ or } y = \frac{43}{90}$ Now, $$0.6 + 0.7 + 0.47 = 0.6 + \frac{7}{9} + \frac{43}{90}$$ $$= \frac{6}{10} + \frac{7}{9} + \frac{43}{90}$$ $$= \frac{54 + 70 + 43}{90} = \frac{167}{90}.$$ **12.** Given, $a = 5 + 2\sqrt{6}$ and $b = \frac{1}{a}$. Then, $$b = \frac{1}{a} = \frac{1}{5 + 2\sqrt{6}} = \frac{1}{5 + 2\sqrt{6}} \times \frac{5 - 2\sqrt{6}}{5 - 2\sqrt{6}}$$ $$= \frac{5 - 2\sqrt{6}}{5^2 - (2\sqrt{6})^2} = \frac{5 - 2\sqrt{6}}{25 - 24} = 5 - 2\sqrt{6}$$ Therefore, $$a^2 + b^2 = (a + b)^2 - 2ab$$ Here, $$a+b=(5+2\sqrt{6})+(5-2\sqrt{6})=10$$ and $$ab = (5 + 2\sqrt{6})(5 - 2\sqrt{6})$$ $$= 5^2 - (2\sqrt{6})^2 = 25 - 24 = 1$$ Therefore, $$a^2 + b^2 = 10^2 - 2 \times 1 = 100 - 2 = 98.$$ ### Unit II: Commercial Mathematics (Chapter 2) ### I: Multiple Choice Questions (1 mark each) 1. (a) Using the formula, $A = P\left(1 + \frac{r}{100}\right)^n$, we have $$5600 = 5000 \left(1 + \frac{r}{100}\right)$$ [:: For 1 year, $n = 1$] $$\Rightarrow \frac{56}{50} = 1 + \frac{r}{100} \Rightarrow \frac{28}{25} - 1 = \frac{r}{100}$$ $$\Rightarrow \frac{3}{25} = \frac{r}{100} \Rightarrow r = 12$$ ### Alternatively: We know that for first year simple interest and compound interest are same. So, rate of interest can also be find out by using simple interest formula. Here, simple interest = ₹ 5600 - ₹ 5000 = ₹ 600 $$\therefore \quad 600 = \frac{5000 \times r \times 1}{100}$$ $$\Rightarrow \quad 600 = 50r \quad \text{or} \quad r = 12$$ Thus, rate of interest is 12% p.a. **2.** (b) Compound interest will be more than double if it is more than principal. Let n be the least number of years in which a sum of money $\mathsf{TP}(\mathsf{say})$ become more than double. According to condition, $$C.I. > P$$ $$\Rightarrow A - P > P$$ $$\Rightarrow A > 2P$$ $$\Rightarrow P\left(1 + \frac{20}{100}\right)^{n} > 2P$$ $$\Rightarrow \left(1 + \frac{1}{5}\right)^{n} > 2$$ $$\Rightarrow \left(\frac{6}{5}\right)^{n} > 2$$ The expression $\left(\frac{6}{5}\right)^n$ will be greater than 2, if n = 4. Hence, the required least number of complete years is 4. **Note:** $$\left(\frac{6}{5}\right)^4$$, *i.e.*, $\frac{1296}{625} = 2.0736$, which is greater than 2. **3.** (c) In case of depreciation, we use the formula, $A = P\left(1 - \frac{r}{100}\right)^n$. Therefore, After one year, value of the car = ₹ 8,40,000 $$\left(1 - \frac{10}{100}\right)$$ = ₹ 7,56,000 Therefore, Statements (i) and (ii) are false. Now, After 2 years, value of the car = $$₹ 8,40,000 \left(1 - \frac{10}{100}\right)^2$$ = $₹ 8,40,000 \times \left(\frac{90}{100}\right)^2$ = $₹ 8,40,000 \times \frac{81}{100} = ₹ 6,80,400$ Therefore, Statement (iii) is true. Hence, out of the given statements, only (iii) is true. #### II: Short Answer Questions-1 (3 marks each) **4.** Here, C.I. = ₹ 331, r = 10% p.a. and n = 3 years. **P** = ? Since Amount, A = P + C.I. $$A = P + 331$$ Using the formula, $$A = P \left(1 + \frac{r}{100}\right)^n$$, we have $$P + 331 = P \left(1 + \frac{10}{100}\right)^3 = P \left(\frac{11}{10}\right)^3$$ $$\Rightarrow 1 + \frac{331}{P} = \left(\frac{11}{10}\right)^3 = 1.331$$ $$\Rightarrow \frac{331}{P} = 1.331 - 1 = 0.331 \Rightarrow P = \frac{331}{0.331} = 1000$$ Thus, the principal is ₹ 1,000. 5. Let 2 years ago, Smriti bought the laptop for ₹ P. Then, Present value of the laptop = ₹81,000 Annual rate of deprecation = 10% In case of depreciation, we use the formula, Present value = value n years ago $\times \left(1 - \frac{r}{100}\right)^n$ ∴ $$₹81000 = P(1 - \frac{10}{100})^2$$ $$\Rightarrow \qquad ₹81000 = P\left(\frac{9}{10}\right)^2$$ ⇒ $$P = ₹ \frac{81000 \times 100}{81} = ₹ 100000$$ Hence, value of the laptop 2 years ago was ₹ 1,00,000. **6.** We have, Principal, P = 38,000; rate of interest, r = 10% p.a. We know that simple interest for first year = compound interest for first year ∴ Compound interest on ₹ 8000 for first year at 10% p.a. $$=$$ ₹ $\left(\frac{8000 \times 10 \times 1}{100}\right)$ =₹ 800 Now, Principal for second year = ₹ 8000 + ₹ 800 = ₹ 8800 ∴ Compound interest for second year = $$₹$$ $\left(\frac{8800 \times 10 \times 1}{100}\right) = ₹880$. Hence, the compound interest on ₹ 8,000 for second year is ₹ 880. ### III: Short Answer Questions-2 (4 marks each) 7. Let the given sum be \mathbb{Z} P and r% be the rate of interest per annum. According to the given condition, we have ₹ 9680 = $$P\left(1 + \frac{r}{100}\right)^2$$...(1) and ₹ 10648 = $$P\left(1 + \frac{r}{100}\right)^3$$...(2) Dividing (2) by (1), we get $$\frac{10648}{9680} = \left(1 + \frac{r}{100}\right)$$ $$\Rightarrow \qquad \frac{1331}{1210} = 1 + \frac{r}{100} \qquad [\because \text{ Dividing Nr. and Dr. on L.H.S. by 8}]$$ $$\Rightarrow \qquad \frac{11}{10} = 1 + \frac{r}{100}$$ $$\Rightarrow \qquad \frac{r}{100} = \frac{1}{10} \quad \text{or} \quad r = 10$$ Thus, the rate of interest per annum is 10%. Now, substituting r = 10 in (1), we get $$₹ 9680 = P \left(1 + \frac{10}{100} \right)^{2}$$ $$⇒ ₹ 9680 = P \left(\frac{11}{10} \right)^{2} = \frac{121}{100} P$$ $$⇒ P = ₹ \frac{9680 \times 100}{121} = ₹ 8000$$ Hence, the required sum is ₹ 8,000. **8.** Let the certain sum of money be \mathbb{Z} P. Then, compound interest (C.I.) on ₹ P at 5% per annum for 2 years is given by $$246 = P\left[\left(1 + \frac{5}{100}\right)^2 - 1\right] \qquad [\because \text{ C.I. is given } \text{ ? 246.}]$$ $$\Rightarrow \qquad 246 =
P\left[\left(\frac{21}{20}\right)^2 - 1\right]$$ $$\Rightarrow \qquad 246 = \frac{41P}{400}$$ $$\Rightarrow \qquad P = \frac{246 \times 400}{41} \Rightarrow P = \text{? 2400}$$ Now, simple interest (S.I.) on \text{? 2400 for 3 years at 6% per annum} Now, simple interest (S.I.) on ₹ 2400 for 3 years at 6% per annum $$= \mathbb{Z}\left(\frac{2400 \times 6 \times 3}{100}\right) = \mathbb{Z} 432$$ Thus, the simple interest on the given sum is $\stackrel{?}{\underset{?}{?}}$ 432. #### IV: Long Answer Questions (5 marks each) **9.** Let the sum borrowed be \mathbf{z} P. Then, amount at the end of first year = $$\sqrt[3]{P + \frac{P \times 10 \times 1}{100}} = \sqrt[3]{\frac{11}{10}}P$$ [: Amount = Principal + Interest] Amount at the end of second year = $$\sqrt[3]{\left(\frac{11}{10}P - 4800\right)} + \sqrt[3]{\left(\frac{11}{10}P - 4800\right)} \times 10 \times 1$$ $$= \sqrt[3]{\left(\frac{11}{10}P - 4800 + \frac{1}{10}\left(\frac{11}{10}P - 4800\right)\right)}$$ $$= \sqrt[3]{\left(\frac{11}{10}P - 4800 + \frac{11}{100}P - 480\right)}$$ $$= \sqrt[3]{\left(\frac{121}{100}P - 5280\right)}$$ $$\Rightarrow \sqrt{\frac{121}{100}P - 5280} = \sqrt[3]{6820}$$ $$\Rightarrow \frac{121}{100}P = 6820 + 5280 = 12100$$ $$\Rightarrow P = \frac{12100 \times 100}{121} = 10000$$ Hence, the sum borrowed was ₹ 10,000. ### **10.** Let the sum of money lent out be \mathbb{Z} P. #### Calculating Compound Interest (C.I.) Here, the interest is payable half yearly. So, we use the formula, $A = P\left(1 + \frac{r/2}{100}\right)^{2n}$, where r is rate of interest p.a. and n is the number of years. $$\therefore \qquad A = P\left(1 + \frac{10/2}{100}\right)^{2\times 1} \qquad [\because r = 10\% \text{ p.a. and } n = 1]$$ $$\Rightarrow \qquad A = P\left(1 + \frac{5}{100}\right)^{2}$$ $$\Rightarrow \qquad P + C.I. = P\left(1 + \frac{5}{100}\right)^{2} \qquad [\because A = P + C.I.]$$ $$\Rightarrow \qquad C.I. = \left[P\left(1 + \frac{5}{100}\right)^{2} - P\right] = 0.1025 P$$ #### Calculating Simple Interest (S.I.) Using the simple interest formula, S.I. = $\frac{P \times r \times t}{100}$, we have S.I. = $$\frac{P \times 10 \times 1}{100}$$ = 0.1 P $$\Rightarrow \qquad \qquad P = \frac{15}{0.0025}$$ $$\Rightarrow \qquad \qquad P = ₹ 6.000.$$ # Unit III: Algebra (Chapters 3-6) ### I: Multiple Choice Questions (1 mark each) 1. (b) Here, $$\frac{x}{y} + \frac{y}{x} = 1 \implies x^2 + y^2 = xy$$ or $x^2 + y^2 - xy = 0$ $\therefore x^3 + y^3 = (x + y)(x^2 + y^2 - xy)$ $= (x + y) \times 0$ [:: $x^2 + y^2 - xy = 0$] $= 0$. 2. (b) We have, $$(x + 3)^3 = x^3 + (3)^3 + 3(x)^2 (3) + 3x(3)^2$$ = $x^3 + 27 + 9x^2 + 27x$ \therefore The coefficient of x^2 in the expansion of $(x + 3)^3$ is 9. 3. (c) We have, $$(x + y)^3 - (x^3 + y^3)$$ = $x^3 + y^3 + 3xy(x + y) - x^3 - y^3$ = $3xy(x + y)$ Thus, 3xy is a factor of the given expression. **4.** (c) Putting x = 1 - 2m and y = 3m in the equation 5x + 3y - 7 = 0, we get $$5(1-2m) + 3 (3m) - 7 = 0$$ $$5 - 10m + 9m - 7 = 0$$ $$-m - 2 = 0 \text{ or } m = -2.$$ **5.** (a) In rectangle ABCD, we have $$AB = DC \qquad \Rightarrow \qquad x + 3y = 13 \qquad \dots (1)$$ and $$AD = BC$$ \Rightarrow $3x + y = 7$...(2) From eq. (1), x = 13 - 3y Substituting x = 13 - 3y in eq. (2) we get $$3(13 - 3y) + y = 7$$ $$39 - 9y + y = 7$$ $$\Rightarrow 39 - 8y = 7$$ $$\Rightarrow 8y = 39 - 7 = 32$$ $$\Rightarrow y = 4$$ Putting y = 4 in eq. (1), we get $$x + 3 \times 4 = 13$$ $\Rightarrow x + 12 = 13$ or $x = 13 - 12 = 1$ Thus, the values of x and y respectively are 1 and 4. **6.** (*d*) We have, $$\sqrt{x^{-1}y} \cdot \sqrt{y^{-1}z} \cdot \sqrt{z^{-1}x}$$ $$= \sqrt{\frac{y}{x}} \cdot \sqrt{\frac{z}{y}} \cdot \sqrt{\frac{x}{z}} = 1.$$ **7.** (b) Given, $$2^{x-1} + 2^{x+1} = 160$$ $$\Rightarrow \frac{2^{x}}{2} + 2 \cdot 2^{x} = 160$$ $$\Rightarrow 2^{x} + 4 \cdot 2^{x} = 320$$ $$\Rightarrow$$ $2^{x} (1+4) = 320 \Rightarrow 5 \cdot 2^{x} = 300$ $$\Rightarrow \qquad 2^x = \frac{320}{5} = 64$$ $$2^x = 64 \quad \Rightarrow \quad 2^x = 2^6 \quad \Rightarrow \quad x = 6.$$ ### **8.** (c) Assertion (A) is true: Given, $$\log_8 m + \log_8 \frac{1}{2} = \frac{2}{3}$$ $$\Rightarrow \qquad \log_8 \left(\frac{m}{2}\right) = \frac{2}{3} \qquad \qquad [\because \log_a m + \log_a n = \log_a (mn)]$$ $$\Rightarrow \qquad \frac{m}{2} = (8)^{\frac{2}{3}}$$ $$\Rightarrow \qquad \frac{m}{2} = (2^3)^{\frac{2}{3}}$$ $$\Rightarrow \qquad \frac{m}{2} = (2)^2 \quad \Rightarrow \quad \frac{m}{2} = 4 \quad \text{or} \quad m = 8$$ Therefore, Assertion (A) is true. Reason (R) is true: By the laws of logarithms, we have $$\log_a m + \log_a n = \log_a (mn)$$ Therefore, statement given in Reason (R) is true and applied in Assertion (A) to simplify the expression. Hence, option (*c*) is the correct answer. ### II: Short Answer Question (3 marks each) **9.** Here, area of the given rectangle is $4p^2 + 4p - 3$. Factorising the expression, we have $$4p^{2} + 4p - 3 = 4p^{2} + 6p - 2p - 3$$ $$= 2p(2p + 3) - 1(2p + 3)$$ $$= (2p + 3)(2p - 1)$$ Thus, possible length and breadth of the rectangle can be (2p + 3) and (2p - 1). 10. Here, the expression $1 - 64a^3 - 12a + 48a^2$ can be rewritten as: $$(1)^3 - (4a)^3 - 3(1)^2(4a) + 3(1)(4a)^2$$...(1) To factorise the above expression, we use the identity Comparing (1) with L.H.S. of (2), we get $$a = 1$$ and $b = 4a$ Hence. $$1 - 64a^3 - 12a + 48a^2 = (1 - 4a)^3$$ $$= (1 - 4a)(1 - 4a)(1 - 4a).$$ 11. The given pair of equations is: $$\frac{x}{10} + \frac{y}{5} - 1 = 0 \qquad \dots (1)$$ and $$\frac{x}{8} + \frac{y}{6} = 15$$...(2) Simplifying eq. (1), we get $$x + 2y = 10 \qquad \dots (3)$$ Simplifying eq. (2), we get $$3x + 4y = 360 \qquad ...(4)$$ From eq. (3), we have x = 10 - 2y Substituting x = 10 - 2y in eq. (4), we get $$3(10 - 2y) + 4y = 360$$ $$\Rightarrow 30 - 6y + 4y = 360$$ $$\Rightarrow 30 - 2y = 360$$ $$\Rightarrow -2y = 360 - 30$$ $$\Rightarrow -2y = 330 \text{ or } y = -165$$ Putting y = -165 in eq. (3), we get $$x + 2(-165) = 10$$ $$x - 330 = 10 \implies x = 330 + 10$$ or $x = 340$ Thus, x = 340 and y = -165 is the solution of the given pair of equation. Now, given $$y = \lambda x + 5$$ $\Rightarrow -165 = 340\lambda + 5$ [: $x = 340$ and $y = -165$] $\Rightarrow -165 - 5 = 340\lambda$ $\Rightarrow -170 = 340\lambda$ or $\lambda = \frac{-170}{340} = \frac{-1}{2}$ Hence, the value of λ is $\frac{-1}{2}$. **12.** Let $2^x = 3^y = 6^{-z} = k$. Then, $$2^x = k \qquad \Rightarrow \qquad 2 = k^{\frac{1}{x}} \qquad \dots (1)$$ $$3^{y} = k \qquad \Rightarrow \qquad 3 = k^{\frac{1}{y}} \qquad \qquad \dots (2)$$ and $$6^{-z} = k \qquad \Rightarrow \qquad 6 = k^{-\frac{1}{z}} \qquad \qquad \dots(3)$$ From eq. (1) and (2), we have $$2 \times 3 = k^{\frac{1}{x}} \times k^{\frac{1}{y}}$$ $$6 = k^{\frac{1}{x} + \frac{1}{y}}$$ $$\Rightarrow \qquad k^{-\frac{1}{z}} = k^{\frac{1}{x} + \frac{1}{y}}$$ $$\Rightarrow \qquad \frac{1}{x} + \frac{1}{y} = -\frac{1}{z}$$ $$\Rightarrow \qquad \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0 \qquad \text{Proved.}$$ 13. Given, $$\log \frac{a-b}{2} = \frac{1}{2} (\log a + \log b)$$ $$\Rightarrow \log \frac{a-b}{2} = \frac{1}{2} \log(ab) \qquad [\because \log m + \log n = \log (mn)]$$ $$\Rightarrow \log \frac{a-b}{2} = \log \sqrt{ab} \qquad [\because m \log n = \log n^m]$$ $$\Rightarrow \frac{a-b}{2} = \sqrt{ab}$$ $$\Rightarrow \frac{(a-b)^2}{4} = ab \qquad [Squaring both sides]$$ $$\Rightarrow a^2 + b^2 - 2ab = 4ab \text{ or } a^2 + b^2 - 6ab = 0 \text{ Proved.}$$ ### III: Short Answer Questions-2 (4 marks each) 14. The given expression is: $$(x-2y)^3 + (2y-3z)^3 + (3z-x)^3$$ Here, $$(x-2y) + (2y-3z) + (3z-x) = 0$$ Now, the identity $$a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$$ reduces to $a^3 + b^3 + c^3 = 3abc$ if $a + b + c = 0$ Hence, $$(x-2y)^3 + (2y-3z)^3 + (3z-x)^3 = 3(x-2y)(2y-3z)(3z-x)$$. 15. Let the present ages of Sarita and her daughter be x years and y years respectively. Then, using the first condition, we have $$x = 4y \qquad \dots (1)$$ Using the second condition, we have $$x + 5 = 3(y + 5)$$ $$\Rightarrow \qquad \qquad x + 5 = 3y + 15$$ $$\Rightarrow \qquad \qquad x - 3y = 15 - 5$$ $$\Rightarrow \qquad x - 3y = 10 \qquad \dots (2)$$ Substituting x = 4y from eq. (1) in eq. (2), we get $$4y - 3y = 10$$ $$\Rightarrow$$ $y = 10$ Putting y = 10 in eq. (1), we get $$x = 4 \times 10 \implies x = 40$$.. Present age of Sarita = 40 years, and Present age of the daughter = 10 years Hence, the present age of the daughter is 10 years. 16. Equations of the two scratches represented by straight lines are: and 5x - 8y = 13 ...(2) To find the point of intersection, we solve the two equations simultaneously. Multiplying eq. (1) by 8 and eq. (2) by 5 the two equations becomes and 25x - 40y = 65 On adding eq. (3) and eq. (4), we get $$89x = 89 \implies x = 1$$ Substituting the value of x in eq. (1), we get $$8 \times 1 + 5y = 3$$ $$\Rightarrow$$ 8 + 5 y = 3 $$\Rightarrow \qquad 5y = 3 - 8 = -5$$ or $$y = -1$$ Thus, the point of intersection of the two scratches is (1, -1). 17. We have, $$x = 2^{\frac{1}{3}} + 2^{\frac{2}{3}}$$ $$\Rightarrow x^3 = \left(2^{\frac{1}{3}} + 2^{\frac{2}{3}}\right)^3$$ $$= \left(2^{\frac{1}{3}}\right)^3 + \left(2^{\frac{2}{3}}\right)^3 + 3\left(2^{\frac{1}{3}}\right)\left(2^{\frac{2}{3}}\right)\left[2^{\frac{1}{3}} + 2^{\frac{2}{3}}\right]$$ $$= 2 + (2^2) + 3x\left(2^{\frac{1}{3} + \frac{2}{3}}\right)$$ $$= 2 + 4 + 3x(2) = 6 + 6x$$ $$\therefore x^3 = 6 + 6x$$ or $x^3 - 6x = 6$ Proved. [Using $(a + b)^3 = a^3 + b^3 + 3ab(a + b)$] $$\left[\because 2^{\frac{1}{3}} + 2^{\frac{2}{3}} = x\right]$$ Proved. **18.** Given, $m = \log_{10} 20$ and $n = \log_{10} 25$. Then, $$2 \log_{10} (p+1) = 2m - n$$ $$\Rightarrow 2 \log_{10} (p+1) = 2 \log_{10} 20 - \log_{10} 25$$ $$= \log_{10} (20)^2 - \log_{10} 25$$ $$= \log_{10} 400 - \log_{10} 25$$ $$= \log_{10} \frac{400}{25} = \log_{10} 16$$ $$\therefore 2 \log_{10} (p+1) = \log_{10} 16$$ $$\Rightarrow \log_{10} (p+1)^2 = \log_{10} 16$$ $$\Rightarrow (p+1)^2 = 16$$ $$\Rightarrow
p+1=4$$ $$\Rightarrow p=3.$$ [Taking only +ve value] #### IV: Long Answer Questions (5 marks each) 19. Given, $$a+b+c=5$$...(1) and $ab+bc+ca=10$...(2) From (1), we have or From (1), we have $$(a+b+c)^2 = (5)^2$$ $$\Rightarrow a^2 + b^2 + c^2 + 2(ab+bc+ca) = 25$$ $$\Rightarrow a^2 + b^2 + c^2 + 2 \times 10 = 25$$ $$\Rightarrow a^2 + b^2 + c^2 + 20 = 25$$ $$\Rightarrow a^2 + b^2 + c^2 = 25 - 20$$ or $$a^2 + b^2 + c^2 = 5$$ Now, $$a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca)$$ $$= (a+b+c)[(a^2 + b^2 + c^2 - (ab+bc+ca)]$$ $$= 5(5-10)$$ [Using (1), (2) and (3)] **20.** Let ξ x be the fixed charge for the first two days and ξ y be the additional charge for each extra day thereafter. Than, $= 5 \times (-5) = -25.$ Charges for the book kept for 6 days Charges for the book kept for 4 days $$x + 2y = 16 \qquad \dots (2)$$ Thus, Subtracting eq. (2) from eq. (1), we get $$2y = 6 \qquad \text{or} \qquad y = 3$$ Substituting the value of y in eq. (1), we get $$x + 4 \times 3 = 22$$ $x + 12 = 22 \implies x = 22 - 12 = 10$ Thus, the fixed charge is ₹ 10 and charge for each extra day is ₹ 3. 21. We have, $$\left(\frac{a^{x+1}}{a^{y+1}}\right)^{x+y} \left(\frac{a^{y+2}}{a^{z+2}}\right)^{y+z} \left(\frac{a^{z+3}}{a^{x+3}}\right)^{z+x}$$ $$= (a^{x+1-y-1})^{x+y} (a^{y+2-z-2})^{y+z} (a^{z+3-x-3})^{z+x}$$ $$= (a^{x-y})^{x+y} (a^{y-z})^{y+z} (a^{z-x})^{z+x}$$ $$= a^{x^2-y^2} \cdot a^{y^2-z^2} \cdot a^{z^2-x^2}$$ $$= a^{x^2-y^2+y^2-z^2+z^2-x^2} = a^0 = 1$$ Proved. **22.** Given, $$\log x = m + n$$ and $\log y = m - n$. Then, $$\log\left(\frac{10x}{y^2}\right) = \log(10x) - \log y^2$$ $$= \log 10 + \log x - 2 \log y$$ $$= 1 + (m+n) - 2 (m-n)$$ $$= 1 + m + n - 2m + 2n$$ $$= 1 - m + 3n$$ $$\log\left(\frac{10x}{y^2}\right) = 1 - m + 3n.$$ $$\left[\because \log \frac{a}{b} = \log a - \log b \right]$$ $$\left[\because \log a^b = b \log a \right]$$ $$\left[\because \log 10 = 1 \right]$$ # Unit IV: Geometry (Chapters 7–13) ### I: Multiple Choice Questions (1 mark each) 1. (b) $\triangle ABC$, AB = AC $$\Rightarrow \Delta ABC$$ is isosceles Also, $$AB = AC \implies \angle B = \angle C$$ Now, in $$\triangle PQR$$, $\angle P = \angle C$ and $\angle Q = \angle B$ But $$\angle B = \angle C \implies \angle P = \angle Q$$ $$\Rightarrow$$ QR = PR \Rightarrow \triangle PQR is also isosceles. No relation is given between the sides BC and PQ. Therefore, ASA congruence cannot be established. So, Δs ABC and PQR are isosceles but not congruent. **2.** (d) In $\triangle PQR$, we have $$\angle P = 43^{\circ}, \angle Q = 77^{\circ} \implies \angle R = 180^{\circ} - (43^{\circ} + 77^{\circ})$$ = $180^{\circ} - 120^{\circ} = 60^{\circ}$ \therefore $\angle Q$ is the greatest angle. $$\Rightarrow$$ PR > PQ : Side opposite to the greatest angle is the largest.] ...(ii) and in $$\triangle AOC$$, EQ | AO DEQP is a parallelogram. Then, by Pythagoras' Theorem, AC = BD = 10 cm. Now, by Mid-point Theorem, in $\triangle ABC$, $$PQ \mid\mid AC \text{ and } PQ = \frac{1}{2}AC$$ $$\therefore$$ PQ = 5 cm Similarly, we can prove PQ = QR = RS = SP = 5 cm. Since diagonals $PR \neq SQ$, PQRS is a rhombus. #### **5.** (a) Statement 1 is true: Since AOB is the diameter of the circle, \angle ACB = 90°. ∴ ∆ACB is a right-angled triangle. So, by Pythagoras' Theorem, $AC^2 + BC^2 = AB^2$ Therefore, Statement 1 is true. #### Statement 2 is false: If ABCD is a cyclic quadrilateral, then $$\angle A + \angle C = 180^{\circ}$$ [: Opposite angles of a cyclic quad. are supplementary.] and $$\angle B + \angle D = 180^{\circ}$$ Here, $$\angle A + \angle C = 90^{\circ} + 95^{\circ} = 185^{\circ} \neq 180^{\circ}$$ and, $$\angle B + \angle D = 70^{\circ} + 105^{\circ} = 175^{\circ} \neq 180^{\circ}$$ Thus, ABCD is not a cyclic quadrilateral. Therefore, Statement 2 is false. Hence, option (a) is the correct answer. ### **6.** (b) Assertion (A) is false: In the figure, we have AD = 12 cm, and BC = 8 cm. From O, draw OM \perp AD. Then, $$AM = DM = 6 cm$$ [: Perpendicular from the centre bisects the chord.] Similarly, BM = CM = 4 cm Now, $$AB = AM - BM$$ $$\Rightarrow$$ AB = 6 cm - 4 cm = 2 cm Therefore, Assertion (A) is false. Reason (R) is true: By the chord properties of a circle, the statement given in Reason (R) is true. Therefore, Reason (R) is true. Hence, option (b) is the correct answer. ### II: Short Answer Questions (3 marks each) ### 7. In $\triangle PQS$ by triangular inequalities $$PQ + QS > PS$$ Similarly, in ΔPRS $$SR + RP > PS$$ Proved. Proved. On adding (1) and (2), we get $$(PQ + QS) + (SR + RP) > 2PS$$ $$\Rightarrow$$ PQ + (QS + SR) + RP > 2PS $$\Rightarrow$$ PQ + QR + RP > 2PS **8. Given:** P is a point on the bisector of $\angle ABC$. Line l is drawn parallel to BA to meet BC at Q. To prove: $\triangle BPQ$ is isosceles. **Proof:** BP is the bisector of ∠ABC $$\Rightarrow$$ $\angle 1 = \angle 2$...(1) $l \parallel BA$ and transversal BP intersects them, therefore $$\angle 1 = \angle 3$$...(2) [Alternate angles] From (1) and (2), we have $$\angle 2 = \angle 3$$ $$\Rightarrow$$ PQ = BQ $$\Delta BPQ$$ is isosceles. such that $\angle BAP = \angle DAP$. To prove: AD = 2CD Proof: We have, [Alternate angles] $$\Rightarrow$$ BP = AB [Sides opp. to equal angles are also equal.] $$\Rightarrow$$ 2BP = 2AB (1) Since P is the mid-point of BC $$BP = \frac{BC}{2}$$ or $BC = 2BP$: From (1), we have $$BC = 2AB$$ or $$AD = 2CD$$. Proved. [Opp. sides of a || gm are equal.] 10. In the figure, we have $$CD \parallel AE$$ and $CY \parallel BA$ Therefore, Δs ABC and ABY are on the same base AB and between same parallels BA and CY. $$\Rightarrow$$ $ar(\Delta ABC) = ar(\Delta ABY)$ $$\Rightarrow ar(\Delta ABC) - ar(\Delta ABX) = ar(\Delta ABY) - ar(\Delta ABX)$$ $$\Rightarrow$$ $ar(\Delta CBX) = ar(\Delta AXY)$. **Proved**. **11.** Given, arc length traced by the second hand of the clock from A to B is half the arc length traced by it from B to C. $$\widehat{AB} = \operatorname{arc} \frac{1}{2} (\widehat{BC})$$ $$\Rightarrow \qquad \angle AOB = \frac{1}{2} \angle BOC$$ Also, $$\angle AOB + \angle BOC = 180^{\circ}$$ Therefore, $$\frac{1}{2} \angle BOC + \angle BOC = 180^{\circ}$$ $$\Rightarrow \frac{3}{2} \angle BOC = 180^{\circ}$$ or $$\angle BOC = \frac{2}{3} \times 180^{\circ} = 120^{\circ}$$ Thus, the second hand subtends an angle of 120° when it moves from B to C. #### III: Short Answer Questions-2 (4 marks each) **12. Given:** A square ABCD in which \triangle OAB is equilateral. To prove: $\triangle OCD$ is isosceles. **Proof:** Since $\triangle OAB$ is equilateral, $$\angle$$ OAB = \angle OBA = 60° Also, ABCD is a square, $$\Rightarrow$$ $\angle DAB = \angle CBA = 90^{\circ}$ $$\therefore$$ $\angle DAB - \angle OAB = \angle CBA - \angle OBA = 30^{\circ}$ $$\Rightarrow$$ $\angle OAD = \angle OBC = 30^{\circ}$ $$OA = OB$$ $$AD = BC$$ [Sides of equilateral triangle] [From (1)] ...(1) [Sides of a square] \therefore By SAS Congruence Criterion, \triangle OAD \cong \triangle OBC $$\Rightarrow$$ OD = OC [CPCT] Hence, $\triangle OCD$ is isosceles. 13. In the figure, AM and BN are the perpendiculars drawn through the obtuse angle A of the parallelogram ABCD. Then, In quad. AMCN, We have $$\angle MAN = 60^{\circ}$$ [Given] $\angle AMC = 90^{\circ}$ [: AM is an altitude on BC.] $\angle ANC = 90^{\circ}$ [: AN is an altitude on CD.] $$\angle MCN = 360^{\circ} - [\angle MAN + \angle AMC + \angle ANC]$$ $$= 360^{\circ} - [60^{\circ} + 90^{\circ} + 90^{\circ}] = 360^{\circ} - 240^{\circ} = 120^{\circ}$$ So, in parallelogram ABCD, $$\angle BCD = 120^{\circ}$$ [∴ $\angle BCD = \angle MCN$] ⇒ $\angle BAD = 120^{\circ}$ [∴ $ABCD$ is a || gm, $\angle BAD = \angle BCD$] Also, $\angle ABC + \angle BCD = 180^{\circ}$ [∴ Adjacent angles of a || gm are supplementary.] ⇒ $\angle ABC + 120^{\circ} = 180^{\circ}$ ⇒ $\angle ABC = 180^{\circ} - 120^{\circ} = 60^{\circ}$ ∴ $\angle ADC = \angle ABC = 60^{\circ}$ Thus, the angles of the parallelogram are 120°, 60°, 120°, 60°. 14. Let ABC be the given triangle, right-angled at B such that perpendicular BC is its shortest side. Let $$BC = x \text{ cm}$$. Then, hypotenuse $$AC = (2x + 6)$$ cm and base $AB = (2x + 6) - 2 = (2x + 4)$ cm and base AB = $$(2x + 6) - 2 = (2x + 4)$$ cm Now, in right triangle ABC, $$AC^{2} = AB^{2} + BC^{2}$$ $$\Rightarrow (2x + 6)^{2} = (2x + 4)^{2} + x^{2}$$ $$\Rightarrow 4x^{2} + 24x + 36 = 4x^{2} + 16x + 16 + x^{2}$$ $$\Rightarrow x^{2} - 8x - 20 = 0$$ $$\Rightarrow x^2 - 10x + 2x - 20 = 0$$ $$\Rightarrow x(x - 10) + 2(x - 10) = 0$$ $$\Rightarrow (x - 10)(x + 2) = 0$$ $$\Rightarrow x = 10 \text{ or } x = -2$$ x = 10 [x = -2 is rejected, since the length of a side cannot be negative.] \Rightarrow Therefore, the sides of the triangle are BC = $$x = 10$$ cm, AB = $2x + 4 = 2 \times 10 + 4 = 24$ cm and AC = $2x + 6 = 2 \times 10 + 6 = 26$ cm Now, area of \triangle ABC = $\frac{1}{2} \times$ AB \times BC = $\frac{1}{2} \times 24 \times 10$ sq cm = 120 sq cm Thus, the area of the given triangle is 120 sq cm. 15. Draw a line XY. Take any point D on this line. Construct perpendicular PD on XY. Cut a line segment AD from D equal to 6 cm. Make angles equal to 30° at A on both sides of AD, say \angle CAD and \angle BAD where B and C lie on XY. Then ABC is the required triangle. ### Justification Since $\angle A = 30^{\circ} + 30^{\circ} = 60^{\circ}$ and $AD \perp BC$. By ASA Congruence Criterion, $\triangle ABD \cong \triangle ACD$ Therefore, $\angle B = \angle C = 60^{\circ}$ [By CPCT] Hence, $\triangle ABC$ is an equilateral triangle with altitude \blacktriangleleft AD = 6 cm. 16. Let the chord BC divide the circle into two segments and A be the point in the major segment. We have to prove that $\angle BAC = 45^{\circ}$. Draw $OM \perp BC$, then OM bisects the chord BC. $$\therefore BM = \frac{BC}{2} = 1 \text{ cm} \qquad [\because BC = 2 \text{ cm}]$$ Now, in right Δ BMO, we have $$OM^2 = OB^2 - BM^2$$ = $(\sqrt{2})^2 - (1)^2 = 2 - 1 = 1
\text{ cm}$ ∴ In \triangle BMO, BM = OM = 1 cm $$\Rightarrow$$ $\angle BOM = \angle OBM = 45^{\circ}$ [:: $\angle BMO = 90^{\circ}$] Thus, $$\angle BOM = \angle COM = 45^{\circ}$$ [:: $\triangle BMO \cong \triangle CMO$] $$\therefore$$ $\angle BOM + \angle COM = 45^{\circ} + 45^{\circ}$ Now, arc BC subtends \angle BOC at the centre and \angle BAC in the remaining part of the circle. Therefore, $$\angle BOC = 2\angle BAC$$ [: Angle subtended by an arc at the centre is double the angle subtended by it in the remaining part of the circle.] $$\Rightarrow \angle BAC = \frac{1}{2} \angle BOC$$ $$= \frac{1}{2} \times 90^{\circ} = 45^{\circ}$$ Hence, the chord BC subtends an angle of 45° at a point A in the major segment. # IV: Long Answer Questions (5 marks each) **17. Given:** ABC is a right triangle such that AB = AC and bisector of angle C intersects the side AB at D. To Prove: AC + AD = BC **Construction:** From D, draw DE \perp BC. **Prove:** In \triangle s DAC and DEC, we have $$\angle CAD = \angle CED$$ [Each 90°] $\angle 1 = \angle 2$ [: CD bisects $\angle ACB$] $CD = CD$ [Common] \therefore By AAS Congruence Criterion, $\triangle DAC \cong \triangle DEC$. Therefore, by CPCT $$AD = DE \qquad ...(1)$$ and $$AC = EC \qquad ...(2)$$ In \$\triangle ABC\$, \$AB = AC\$ [Given] \$\Rightarrow\$ \$\alpha C = \alpha B = 45^\circ \$ [\therefore Angles opp. to equal sides are equal.] \$\Rightarrow\$ \$\alpha C = \alpha B = 45^\circ\$ [\therefore Angles opp. to equal sides are equal.] \$\Rightarrow\$ \$\alpha C = \alpha B = 45^\circ\$ [\therefore \alpha A = 90^\circ] \$\Rightarrow\$ [By construction] \$\Rightarrow\$ \$\alpha BDE = 45^\circ\$ [\therefore \alpha B = 45^\circ] \$\therefore\$ \$\alpha BDE = \alpha BDE\$ \$\Rightarrow\$ [\therefore \alpha B = 45^\circ] \$\therefore\$ \$\Line ABDE = \alpha BDE\$ \$\Rightarrow\$ [\therefore \alpha B = 45^\circ] \$\Rightarrow\$ \$\Line ABDE = \alpha BDE\$ \$\Rightarrow\$ [\therefore \alpha B = 45^\circ] \$\Rightarrow\$ \$\Line ABDE = \alpha BDE\$ \$\Rightarrow\$ [\therefore \alpha B = 45^\circ] \$\Rightarrow\$ \$\Line ABDE = \alpha BDE\$ \$\Rightarrow\$ [\therefore \alpha B = 45^\circ] \$\Rightarrow\$ \$\Line ABDE = \alpha BDE\$ \$\Rightarrow\$ [\therefore \alpha B = 45^\circ] \$\Rightarrow\$ \$\Line ABDE = \alpha BDE\$ \$\Rightarrow\$ [\therefore \alpha B = 45^\circ] \$\Rightarrow\$ \$\Line ABDE = \alpha BDE\$ \$\Rightarrow\$ [\therefore \alpha B = 45^\circ] \$\Rightarrow\$ \$\Line ABDE = \alpha BDE\$ \$\Rightarrow\$ [\therefore \alpha B = 45^\circ] \$\Rightarrow\$ \$\Line ABDE = \alpha BDE\$ \$\Rightarrow\$ [\therefore \alpha B = 45^\circ] \$\Rightarrow\$ \$\Line ABDE = \alpha BDE\$ \$\Rightarrow\$ [\therefore \alpha B = 45^\circ] \$\Rightarrow\$ \$\Line ABDE = \alpha BDE\$ \a From, (1) and (3), we get BE = DE = AD Now, from the figure, BC = BE + EC BC = AD + AC[: From (2), EC = AC] \Rightarrow Proved. 18. In parallelogram ABCD, or AD || BC and transversal AC intersects them, therefore $$\angle DAO = \angle BCO$$ [Alternate angles] $\angle PAO = \angle QCO$...(1) Now, in Δs AOP and COQ, we have $$\angle AOP = \angle COQ$$ $AO = CO$ $\angle PAO = \angle QCO$ [Vertically opp. angles] [Diagonals of a || gm bisect each other.] By ASA Congruence Criterion, $\triangle AOP \cong \triangle COQ$ $$\Rightarrow$$ PO = QO, *i.e.*, O bisects PQ. Hence, PQ is bisected at O. 19. In the figure, we have between same parallels AD and EQ, we have $$\Rightarrow \quad ar(\Delta \text{PEA}) + ar(\Delta \text{APF}) + ar(\Delta \text{AFD}) = ar(\Delta \text{APF}) + ar(\Delta \text{AFD}) + ar(\Delta \text{QFD})$$ $$\Rightarrow$$ $ar(\Delta PEA) = ar(\Delta QFD).$ [Proved in (1)] **20.** In $\triangle BOD$, we have BD = OD $$OD = OB$$ [Radii of the circle] $$BD = OD = OB$$ Thus, $\triangle BOD$ is equilateral. $$\therefore$$ $\angle BOD = 60^{\circ} \Rightarrow \angle BCD = 30^{\circ}$ [: Angle subtended by an arc at the centre is double the angle subtended by it in the remaining part of the circle.] Now, AB is the diameter of the circle. [Angle in the semicircle is a right angle.] $$\Rightarrow$$ $\angle ACM = \angle ACB - \angle BCM = 90^{\circ} - 30^{\circ} = 60^{\circ}$ Also, in right \triangle ACM, $$\angle$$ CAM = 90° – \angle ACM $$\Rightarrow$$ $\angle CAB = 90^{\circ} - 60^{\circ} = 30^{\circ}.$ $[:: \angle CAM = \angle CAB]$ ### Unit V: Statistics (Chapters 14-15) ### I: Multiple Choice Questions (1 mark each) - **1.** (b) \overline{x}_1 is the mean of n_1 observations - $\therefore \quad \text{Sum of all observations in } x_1 \text{ group} = \Sigma n_1 \overline{x}_1$ $\overline{x}_2 \text{ is the mean of } n_2 \text{ observations}$ - $\begin{array}{l} \therefore \quad \text{Sum of all observations in } x_2 \text{ group} = \Sigma n_2 \overline{x}_2 \\ \quad \text{Continuing in this way,} \\ \quad \overline{x}_n \text{ is the mean of } n_n \text{ observations} \end{array}$ - \therefore Sum of all observations in x_n group = $\sum n_n \overline{x}_n$ Thus, mean (\overline{x}) of all the groups taken together $$= \frac{\sum n_1 \overline{x}_1 + \sum n_2 \overline{x}_2 + \dots \sum n_n \overline{x}_n}{n_1 + n_2 + \dots n_n}$$ $$= \frac{\sum_{i=1}^n n_i \overline{x}_i}{\sum_{i=1}^n n_i}$$ - - \Rightarrow upper class limit = 2m l - **3.** (c) In a frequency polygon abscissae of the points are the class marks of the respective classes. 4. (b) The correct mean = $$\frac{50 \times 80 + 72 - 27}{50}$$ = $\frac{4045}{50}$ = 80.9 ### II: Short Answer Questions-1 (3 marks each) 5. According to the given histogram, we have the following frequency distribution table. | Wages (in ₹) | Number of Workers | |--------------|-------------------| | 100-150 | 15 | | 150–200 | 50 | | 200–250 | 30 | | 250–300 | 35 | | 300–350 | 20 | | 350–400 | 10 | 6. First we modify the given distribution with proper class intervals as shown below: | Rainfall (in mm) | Number of Days | |------------------|----------------| | 0–2 | 27 | | 2–4 | 12 | | 4–6 | 10 | | 6–8 | 5 | | 8–10 | 4 | | 10–12 | 2 | According to the above distribution— - (i) The rainfall was recorded between 4 mm and 6 mm on 10 days. - (ii) The rainfall was less than 4 mm on (27 + 12 =) 39 days. - (iii) The rainfall was 6 mm or more on (5 + 4 + 2 =) 11 days. - 7. The given distribution is non-overlapping. So we first change it into an overlapping distribution as: | Class Interval | 10.5–20.5 | 20.5–30.5 | 30.5–40.5 | 40.5–50.5 | 50.5–60.5 | |----------------|-----------|-----------|-----------|-----------|-----------| | Frequency | 25 | 12 | 10 | 15 | 8 | We also update this frequency distribution table by adding the two classes of the same width at the two extremes and inserting a row of class marks, as shown below: | Class Interval | 0.5-10.5 | 10.5–20.5 | 20.5–30.5 | 30.5–40.5 | 40.5–50.5 | 50.5-60.5 | 60.5-70.5 | |----------------|----------|-----------|-----------|-----------|-----------|-----------|-----------| | Class Mark | 5.5 | 15.5 | 25.5 | 35.5 | 45.5 | 55.5 | 65.5 | | Frequency | 0 | 25 | 12 | 10 | 15 | 8 | 0 | ### **Drawing Frequency Polygon:** - *Step 1*: We draw and label the x and y axes. - Step 2: Using the frequencies: 0, 25, 12, 10, 15, 8, 0 as y-values and the class marks: 5.5, 15.5, 25.5, 35.5, 45.5, 55.5 and 65.5 as the x-values, we plot the points (5.5, 0), (15.5, 25), (25.5, 12), (35.5, 10), (45.5, 15), (55.5, 8) and (65.5, 0). - Step 3: Connect adjacent points with line segments. The required frequency polygon is drawn in the following graph. #### III: Short Answer Questions-2 (4 marks each) 8. From the given distribution, we have the following overtapping (or continuous) frequency distribution. | Marks Obtained | Number of Students | |----------------|--------------------| | 0–15 | 20 | | 15–30 | 15 | | 30–45 | 5 | | 45–60 | 15 | | 60–75 | 10 | | 75–90 | 5 | The required histogram for the above distribution is drawn below. **9.** To compute the value of *a* and frequencies of 30 and 70, we draw the following table: | x | f | $f \times x$ | |-------|-----------------------|---------------------------| | 10 | 17 | 170 | | 30 | 5a + 3 | 150a + 90 | | 50 | 32 | 1600 | | 70 | 7a - 11 | 490a - 770 | | 90 | 19 | 1710 | | Total | $\Sigma f = 12a + 60$ | $\Sigma fx = 640a + 2800$ | Hence, value of a is 5 and frequencies of 30 and 70 are 28 and 24 respectively. 10. Arranging the data in ascending order, we get and $7a - 11 = 7 \times 5 - 11 = 24$ Here, number of observations, n = 10, which is even. ... Median = mean of $$\left(\frac{n}{2}\right)$$ th and $\left(\frac{n}{2}+1\right)$ th score = mean of 5th and 6th scores = $\frac{37+49}{2} = 43$ On replacing 32 by 50, the ascending order of data becomes, :. New median = mean of 5th and 6th scores $$=\frac{49+50}{2}=49.5.$$ ### IV: Long Answer Questions (5 marks each) 11. The frequency distribution table for the given data is as under: | Marks | Tally Marks | Frequency | |-------|--------------|-----------| | 0–10 | IIII | 4 | | 10–20 | THL 1 | 6 | | 20–30 | THL THL IIII | 14 | | 30–40 | THL 1111 | 9 | | 40–50 | THL 1 | 6 | | 50–60 | | 1 | From the above table, we can prepare a 'less than' cumulative frequency table as below: | Marks | Cumulative Frequency | |--------------|----------------------| | Less than 10 | 4 | | Less than 20 | 10 | | Less than 30 | 24 | | Less than 40 | 33 | | Less than 50 | 39 | | Less than 60 | 40 | **12.** First, we modify the given table by inserting two more class intervals namely 70–80 (in the beginning) and 0–10 (at the end) each with zero frequency. Also, we add a column of class marks to get the following table. | Age
(in years) | Class
Mark | Number of
Patients | |-------------------|---------------|-----------------------| | 70–80 | 75 | 0 | | 60–70 | 65 | 4 | | 50–60 | 55 | 9 | | 40–50 | 45 | 17 | | 30–40 | 35 | 11 | | 20–30 | 25 | 3 | | 10–20 | 15 | 1 | | 0-10 | 5 | 0 | Now, taking age (in years) on x-axis and number of patients on y-axis, we plot the points (75, 0), (65, 4) ... and so on. After joining these
points by a ruler, we obtain the frequency polygon as shown in the following graph. # Unit VI: Mensuration (Chapters 16-17) ### I: Multiple Choice Questions (1 mark each) 1. (a) Let ABC be the isosceles triangle in which AB = AC = x cm and base BC = 5 cm. Then, Perimeter of $\triangle ABC = AB + AC + BC$ $$\Rightarrow$$ 11 = 2 x + 5 $$\Rightarrow$$ 2x = 6 or x = 3 $$\Rightarrow$$ AB = AC = 3 cm Draw AD \perp BC. Then, AD bisects BC $$\Rightarrow$$ BD = CD = $\frac{5}{2}$ cm In right $\triangle ADB$, $AD = \sqrt{AB^2 - BD^2}$ $$=\sqrt{(3)^2 - \left(\frac{5}{2}\right)^2} = \sqrt{9 - \frac{25}{4}} = \frac{\sqrt{11}}{2}$$ Thus, area of $\triangle ABC = \frac{1}{2} \times BC \times AD$ $$=\frac{1}{2} \times 5 \times \frac{\sqrt{11}}{2} \text{ cm}^2 = \frac{5}{4} \sqrt{11} \text{ cm}^2.$$ **2.** (b) If 'a' be the side of the square and 'r' be the radius of the circle, then $$4a = 2\pi r$$ [: Their perimeters are equal.] $$\Rightarrow \frac{a}{r} = \frac{\pi}{2}$$ $$\therefore \frac{\text{area of square}}{\text{area of circle}} = \frac{a^2}{\pi r^2} = \frac{1}{\pi} \left(\frac{a}{r}\right)^2$$ $$= \frac{1}{\pi} \left(\frac{\pi}{2}\right)^2 = \frac{\pi}{4} = \frac{22}{7 \times 4} = \frac{11}{14}, i.e., 11:14.$$ **3.** (c) We know that the length of the diagonal of a cube of edge 'a' is $\sqrt{3}a$. $$\therefore \qquad \left(\sqrt{3}\,a\right)^2 = 192$$ $$3a^2 = 192 \implies a^2 = 64$$ So, edge of the cube is 8 cm. **4.** (d) Volume of rain water collected on the terrace = $8 \text{ m} \times 8 \text{ m} \times \frac{5}{100} \text{ m}$ = 3.2 cu m = 3200 litres or 3.2 kilolitres. #### II: Short Answer Questions-1 (3 marks each) area of the playground = 4800 sq m 5. Here, depth of gravel needed = 1 cm = $\frac{1}{100}$ m and .. Volume of the gravel to cover the playground $$=4800 \times \frac{1}{100}$$ cu m = 48 cu m Now, cost of 1 cu m of gravel = ₹ 5.25 ∴ Cost of 48 cu m of gravel = ₹ $48 \times 5.25 = ₹ 252$. **6.** We have, length of the reservoir = 20 m, breadth of the reservoir = 12 m; and Depth of the water used, as level went down = 1 m \therefore Volume of water used on the day = 20 m × 12 m × 1 m $$= 240 \text{ cu m}$$ Also, 1 cu m = 1000 litres $$\therefore 240 \text{ cu m} = 240 \times 1000 \text{ litres}$$ $= \frac{240 \times 1000}{1000} \text{ kilolitres} \qquad \left[\because 1 \text{ litre} = \frac{1}{1000} \text{ kilolitres} \right]$ **2**10 MH Hence, 240 kilolitres water was used on that day. 7. Obviously, $$OA = OB = OC = AB = BC = 6 \text{ cm}$$ Therefore, Δs OAB and OBC are equilateral triangles each of sides 6 cm. ∴ Area of equilateral $$\triangle$$ OAB = $\frac{\sqrt{3}}{4}$ (6)² sq cm = $9\sqrt{3}$ sq cm $$= 2 \times 9\sqrt{3}$$ sq cm $= 18\sqrt{3}$ sq cm. 8. Draw BE \perp AC. \Rightarrow In $$\triangle$$ ADC, $$AC^{2} = CD^{2} - AD^{2}$$ $$= (13)^{2} - (5)^{2}$$ $$= 169 - 25 = 144$$ $$\Rightarrow$$ AC = 12 cm In \triangle ABC, AB = BC and BE \perp AC ∴ E is the mid-point of AC. Hence, $$CE = \frac{1}{2} (12 \text{ cm}) = 6 \text{ cm}$$ Now, $BE^2 = BC^2 - CE^2 = (10)^2 - (6)^2$ $= 100 - 36 = 64$ BE = 8 cm \therefore Area of quad. ABCD = Area of \triangle ABC + Area of \triangle ACD $$= \frac{1}{2} \times AC \times BE + \frac{1}{2} \times AC \times AD$$ $$=\left(\frac{1}{2} \times 12 \times 8\right) + \left(\frac{1}{2} \times 12 \times 5\right) = 48 + 30 = 78 \text{ sq cm}.$$ **9.** (a) Here, radius of bigger circle is 4 cm so the radius of smaller circle will be 2 cm. Thus, area of shaded region = area of bigger circle - area of smaller circle $$=\pi(4)^2 \text{ sq cm} - \pi(2)^2 \text{ sq cm}$$ $$= (16\pi - 14\pi) \text{ sq cm} = 12\pi \text{ sq cm}$$ $$= 12 \times \frac{22}{7} \text{ sq cm}$$ $$= 37\frac{5}{7} \text{ sq cm}.$$ (b) Let the circle touch \triangle ABC at P, Q and R respectively as shown in the figure. Draw OP \perp AB, OQ \perp AC and OR \perp BC. Then, $$AP = AQ = OP = OQ = r$$ (say) Thus, OPAQ is a square of side r cm and radius of the circle is also r cm. $$AB^2 + AC^2 = BC^2$$ $$\Rightarrow$$ AB² + (8)² = (10)² $$\Rightarrow$$ AB² = $(10)^2 - (8)^2 = 100 - 64 = 36$ Thus, $$AB = 6 \text{ cm}$$ From the figure, BP = BR and CQ = CR $$\Rightarrow$$ AB – AP = BR and AC – AQ = CR $$\Rightarrow$$ 6-r = BR and 8-r = CR On adding the two relations, we get $$6 - r + 8 - r = BR + CR$$ $$\Rightarrow$$ 14 – 2 r = BC $$\Rightarrow$$ 14 – 2 r = 10 $$\Rightarrow$$ $2r = 4$ or $r = 2$ cm. Thus, radius of the circle is 2 cm. Hence, area of the shaded region = $\pi(2)^2$ sq cm $$=\frac{22}{7}(2)^2 \text{ sq cm} = \frac{88}{7} \text{ sq cm} \quad \text{or} \quad 12\frac{4}{7} \text{ sq cm}.$$ **10.** Let *a* cm be the side of the solid iron cube. Then, Volume of the iron cube = a^3 cu cm Dimensions of the base of the rectangular vessel = $60 \text{ cm} \times 45 \text{ cm}$ Height of the vessel = 20 cm [By Pythagoras' Theorem] [: BC = 10 cm] Since vessel is half-filled with water, therefore Volume of water in the vessel = $$\frac{1}{2} \times$$ Volume of vessel = $\frac{1}{2} \times$ base \times height = $\frac{1}{2} \times 60 \times 45 \times 20$ cu cm = 27000 cu cm On dropping the solid iron cube into the vessel the water level comes up to brim. : Volume of the solid cube = Volume of water in the vessel $$\Rightarrow \qquad a^3 = 27000 \text{ cu cm}$$ $$\Rightarrow$$ $a^3 = (30 \times 30 \times 30)$ cu cm or $$a^3 = 30 \text{ cm} \times 30 \text{ cm} \times 30 \text{ cm}$$ Hence, size of the solid iron cube is $30 \text{ cm} \times 30 \text{ cm} \times 30 \text{ cm}$. ### IV: Long Answer Questions (5 marks each) 11. From rectangle ABCD, let a trapezium BCEF be cut off so that BF = 16x and CE = 5x. Now, in rectangle ABCD, we have $$AB = 63 \text{ cm}$$ and $BC = 5 \text{ cm}$. $$\therefore$$ Area of rec. ABCD = AB × BC = 315 sq cm Also, we have Area of trap. BCEF = $$\frac{4}{15}$$ (Area of rec. ABCD) $$\Rightarrow \frac{1}{2}(BF + CE) \times BC = \frac{4}{15} \times 315$$ $$\Rightarrow \quad \frac{1}{2}(16x + 5x) \times 5 = 84$$ $$\Rightarrow 21x = \frac{84 \times 2}{5} \Rightarrow x = \frac{8}{5} \text{ cm}$$: BF = $$16 \times \frac{8}{5}$$ cm = 25.6 cm and $CE = 5 \times \frac{8}{5} \text{ cm} = 8 \text{ cm}$ Thickness of the wood = 0.5 cm So, internal dimensions of the box are 20 cm, 10 cm and 5.5 cm - : Internal surface area of the box = $[2(20 + 10) \times 5.5 + 20 \times 10]$ sq cm - [: Surface area of open box = lateral surface area + area of the base] = $$(11 \times 30 + 200)$$ sq cm = $(330 + 200)$ sq cm $$= (330 + 200) \text{ sq cm}$$ $$= 530 \text{ sq cm}$$ - : Cost of painting 530 sq cm of the box = ₹ 106 - ∴ Cost of painting 1 sq cm of the box = $₹\frac{106}{530} = ₹\frac{1}{5}$, *i.e.*, 20 paise Hence, the rate of painting per sq cm is 20 paise. # Unit VII: Trigonometry (Chapters 18) ### I: Multiple Choice Questions (1 mark each) 1. (b) Given, $3 \tan \theta = 4 \implies \tan \theta = \frac{4}{3}$ $$\therefore \frac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta} = \frac{\tan \theta - 1}{\tan \theta + 1}$$ $$= \frac{\frac{4}{3} - 1}{\frac{4}{3} + 1} = \frac{\frac{1}{3}}{\frac{7}{3}} = \frac{1}{7}.$$ - (Dividing Nr. and Dr. by $\cos \theta$) - 2. (a) We have, $\csc \theta = \sqrt{10}$ \Rightarrow $\csc^2 \theta = 10$ \Rightarrow $1 + \cot^2 \theta = 10$ \Rightarrow $\cot^2 \theta = 9$ \Rightarrow $\cot \theta = 3$ and $\tan \theta = \frac{1}{3}$ $$\therefore \tan \theta + \cot \theta = \frac{1}{3} + 3 = \frac{10}{3}.$$ **3.** (d) Statement 1 is false: In right $$\triangle ADB$$, $AD = \sqrt{AB^2 - BD^2}$ = $\sqrt{(13)^2 - (5)^2} = \sqrt{169 - 25} = \sqrt{144} = 12 \text{ cm}$ $\therefore \quad \sec \alpha = \frac{AB}{BD} \quad \Rightarrow \quad \sec \alpha = \frac{13}{5}$ Therefore, Statement 1 is false. Statement 2 is false: In right $$\triangle ADC$$, $AC = \sqrt{CD^2 + AD^2}$ = $\sqrt{(16)^2 + (12)^2} = \sqrt{256 + 144}$ = $\sqrt{400} = 20$ cm $$\therefore \csc \beta = \frac{AC}{AD} \implies \csc \beta = \frac{20}{12} \text{ or } \csc \beta = \frac{5}{3}.$$ Therefore, Statement 2 is false. Hence, option (*d*) is the correct answer. ### II: Short Answer Questions-1 (3 marks each) 4. Given, $\cot \alpha = \frac{3}{4}$ In right triangle ABC, AC = $$\sqrt{AB^2 + BC^2}$$ = $\sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$ $$\therefore \cos \alpha = \frac{AB}{AC} \implies \cos \alpha = \frac{3}{5}$$ Now, $$\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} = \sqrt{\frac{1+\frac{3}{5}}{1-\frac{3}{5}}}$$ $$=\sqrt{\frac{\frac{8}{5}}{\frac{2}{5}}} = \sqrt{\frac{8}{2}} = \sqrt{4} = 2$$ **Proved.** 5. Given that sin(A + B) = sin A cos B + cos A sin B Let $A = 45^{\circ}$ and $B = 30^{\circ}$. Then, $$\sin(A + B) = \sin(45^{\circ} + 30^{\circ}) = \sin 75^{\circ}$$...(1) $\sin A \cos B + \cos A \sin B = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$ $$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2}$$ $$= \frac{\sqrt{3} + 1}{2\sqrt{2}} \qquad ...(2)$$ According to the question, left hand sides of (1) and (2) are equal. $$\therefore \qquad \sin 75^{\circ} = \frac{\sqrt{3} + 1}{2\sqrt{2}}.$$ 6. We have, $$\sin \theta = \cos \theta$$ $$\Rightarrow$$ $\tan \theta = 1$ $$\Rightarrow$$ $\theta = 45^{\circ}$ $$3\tan^2\theta + 2\sin^2\theta - 4 = 3\tan^2 45^\circ + 2\sin^2 45^\circ - 4$$ $$=3(1)^2+2\left(\frac{1}{\sqrt{2}}\right)^2-4=3+1-4=0.$$ ### III: Short Answer Questions-2 (4 marks each) 7. In right triangle ABC, tan $$45^{\circ} = \frac{AB}{BC}$$ $$\Rightarrow 1 = \frac{6}{BC} \qquad [\because \tan 45^{\circ} = 1]$$ $$\Rightarrow BC = 6 \text{ cm}$$ $$\tan 30^{\circ} = \frac{AB}{BD}$$ $$\Rightarrow \frac{1}{\sqrt{3}} = \frac{6}{BD}$$ $$\Rightarrow BD = 6\sqrt{3} \text{ cm}$$ $$\therefore CD = BD - BC$$ Also, in right triangle ABD, $$= (6\sqrt{3} - 6) \text{ cm} = 6(\sqrt{3} - 1) \text{ cm}.$$ 8. We have, $\frac{12\cos^2 30^\circ - 2\tan^2 60^\circ + 4\sin^2 90^\circ}{4\csc^2 45^\circ}$ $$= \frac{12\left(\frac{\sqrt{3}}{2}\right)^2 - 2(\sqrt{3})^2 +
4(1)^2}{4(\sqrt{2})^2}$$ $$= \frac{12 \times \frac{3}{4} - 2 \times 3 + 4}{4 \times 2} = \frac{9 - 6 + 4}{8} = \frac{7}{8}.$$ (ii) The given formula is $$\sin 2A = \frac{2\tan A}{1 + \tan^2 A}$$ Substituting $A = 30^{\circ}$ on both sides, we get $$\sin 2 \times 30^{\circ} = \frac{2 \tan 30^{\circ}}{1 + \tan^{2} 30^{\circ}}$$ $$\sin 60^{\circ} = \frac{2 \times \frac{1}{\sqrt{3}}}{1 + \left(\frac{1}{\sqrt{3}}\right)^{2}} \qquad \left[\because \tan 30^{\circ} = \frac{1}{\sqrt{3}}\right]$$ $$= \frac{\frac{2}{\sqrt{3}}}{1 + \frac{1}{3}} = \frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}} = \frac{2}{\sqrt{3}} \times \frac{3}{4} = \frac{\sqrt{3}}{2}$$ Hence, $$\sin 60^{\circ} = \frac{\sqrt{3}}{2}.$$ **10.** (i) We have, $$\frac{\sin 77^{\circ}}{\cos 13^{\circ}} + \cos^2 42^{\circ} - \sin^2 48^{\circ} - 3 \cot^2 60^{\circ}$$ $$= \frac{\sin (90^{\circ} - 13^{\circ})}{\cos 13^{\circ}} + \cos^{2} 42^{\circ} - \sin^{2} (90^{\circ} - 42^{\circ}) - 3\left(\frac{1}{\sqrt{3}}\right)^{2} \quad \left[\because \cot 60^{\circ} = \frac{1}{\sqrt{3}}\right]$$ $$= \left(\frac{\cos 13^{\circ}}{\cos 13^{\circ}}\right) + \cos^{2} 42^{\circ} - \cos^{2} 42^{\circ} - 3 \times \frac{1}{3} \qquad \left[\because \sin (90^{\circ} - \theta) = \cos \theta\right]$$ $$= 1 - 1 = 0.$$ $$(ii) \left(\frac{\sin 59^{\circ}}{\cos 31^{\circ}}\right)^{2} + \frac{\cos^{2} 23^{\circ}}{\sin^{2} 67^{\circ}} - \frac{1}{4} \sec^{2} 60^{\circ}$$ $$= \left(\frac{\sin (90^{\circ} - 31^{\circ})}{\cos 31^{\circ}}\right)^{2} + \frac{\cos^{2} 23^{\circ}}{\sin^{2} (90^{\circ} - 23^{\circ})} - \frac{1}{4} (2)^{2} \qquad [\because \sec 60^{\circ} = 2]$$ $$= \left(\frac{\cos 31^{\circ}}{\cos 31^{\circ}}\right)^{2} + \frac{\cos^{2} 23^{\circ}}{\cos^{2} 23^{\circ}} - \frac{1}{4} \times 4 \qquad [\because \sin (90^{\circ} - \theta = \cos \theta)]$$ $$= 1 + 1 - 1 = 1.$$ # Unit VIII: Coordinate Geometry (Chapters 19-20) ### I: Multiple Choice Questions (1 mark each) - **1.** (*d*) The point whose ordinate is 0 lies on the *x*-axis. Therefore the points Q(7, 0) and O(0, 0) are on the *x*-axis. - 2. (a) The point whose abscissa is 0 lies on the y-axis. So, Statement (i) is the correct statement. Statement (ii) is false as point (3, 0) lies on the x-axis. Statement (iii) is also false as abscissa of a point is positive in I and IV quadrants. - 3. (c) Putting x = 0 in the equation 2x + 3y = 6, we get $$2 \times 0 + 3y = 6 \implies 3y = 6 \implies y = 2$$ \therefore The graph of the given equation cuts the y-axis at (0, 2). - **4.** (*d*) If a pair of linear equations is consistent, then the lines will be either intersecting or coincident. - **5.** (c) By distance formula, we have $$\sqrt{(4-1)^2 + (a-0)^2} = 5$$ $$\Rightarrow \sqrt{(3)^2 + a^2} = 5$$ $$\Rightarrow 9 + a^2 = 25$$ $$\Rightarrow a^2 = 25 - 9 = 16 \Rightarrow a = \pm 4$$ [: Squaring both sides] ### II: Short Answer Questions-1 (3 marks each) **6.** Plot the three vertices of the rectangle as A(3, 2), B(-4, 2), C(-4, 5). We have to find the coordinates of the fourth vertex D so that ABCD is a rectangle. Since the opposite sides of a rectangle are equal, so the abscissa of D should be equal to abscissa of A, *i.e.*, 3 and the ordinate of D should be equal to the ordinate of C, *i.e.*, 5. So, the coordinates of D are (3, 5). 7. The given equation is 2x + 5y = 19 As the ordinate of the point is $1\frac{1}{2}$ times its abscissa, we have $$y = 1\frac{1}{2}x \quad \text{or} \quad y = \frac{3}{2}x$$ Putting $y = \frac{3}{2}x$ in 2x + 5y = 19, we get $$2x + 5 \times \frac{3}{2}x = 19 \implies 2x + \frac{15}{2}x = 19$$ $$\Rightarrow \frac{19}{2}x = 19 \implies x = 2$$ Therefore, $y = \frac{3}{2} \times 2 = 3$. Thus, the required point is (2, 3). **8.** Let A(0, 3), B(0, 1) and $C(\sqrt{3}, 2)$ be the vertices of triangle ABC. Then, by distance formula AB = $$\sqrt{(0-0)^2 + (1-3)^2}$$ = $\sqrt{(-2)^2}$ = $\sqrt{4}$ = 2 BC = $\sqrt{(\sqrt{3}-0)^2 + (2-1)^2}$ = $\sqrt{(\sqrt{3})^2 + (1)^2}$ = $\sqrt{3+1}$ = $\sqrt{4}$ = 2 and AC = $\sqrt{(\sqrt{3}-0)^2 + (2-3)^2}$ = $\sqrt{(\sqrt{3})^2 + (-1)^2}$ = $\sqrt{3+1}$ = $\sqrt{4}$ = 2 Since AB = BC = AC, the given points form an equilateral triangle. #### III: Short Answer Questions-2 (4 marks each) 9. The given system of simultaneous linear equations is: To solve the above equations graphically, we find at least two solutions for each equation. Table of solution set for eq. (1) is: | x | 3 | -1 | |---|---|----| | у | 2 | -6 | To draw the graph of eq. (1), we plot A(3, 2) and B(-1, -6) and join them by a straight line l. Table of solution set for eq. (2) is: | x | 3 | -3 | |---|----|----| | у | -4 | 2 | To draw the graph of eq. (2), we plot C(3, -4) and D(-3, 2) and join them by a straight line m. The two lines intersect each other at (1, -2). Hence, x = 1, y = -2 is a solution of the given system of linear equations. From the graph, we see that the line 2x - y - 4 = 0 meets y-axis at (0, -4) and the line x + y + 1 = 0 meets y-axis at (0, -1). **10.** The coordinates of the fielders—at *point* and *cover* are P(0, 5) and C(1, 2) respectively and the batsman at B(x, y) is equidistant from both the fielders. So, we have CB = PB Using the distance formula, CB = $$\sqrt{(x-1)^2 + (y-2)^2}$$ and PB = $$\sqrt{(x-0)^2 + (y-5)^2}$$ Now, $$CB = PB$$ $$\Rightarrow \sqrt{(x-1)^2 + (y-2)^2} = \sqrt{(x-0)^2 + (y-5)^2}$$ $$\Rightarrow (x-1)^2 + (y-2)^2 = (x-0)^2 + (y-5)^2$$ $$\Rightarrow \qquad x^2 - 2x + 1 + y^2 - 4y + 4 = x^2 + y^2 - 10y + 25$$ $$\Rightarrow$$ $-2x + 5 - 4y = -10y + 25$ $$\Rightarrow \qquad 2x - 6y + 20 = 0$$ or $$x - 3y + 10 = 0$$ Thus, the required relation is x - 3y + 10 = 0.