Page 32 - ISC-12
P. 32

Multiple Correct Choices Type                          Jai Baba Ki9
                                                                                      π π
                                                       4
                                            6
                                8
                                                                  2
          37. Let f(x) = 7 tan x + 7 tan x − 3 tan x − 3 tan x for all x ∈          − ,     . Then the correct
                                                                                      2 2
              expression(s) is (are)
                      π/4             1                                π/4
                   Z                                                Z
               (A)       x f(x) dx =    .                       (B)       f(x) dx = 0.
                    0                 12                              0
                   Z  π/4             1                             Z  π/4
               (C)       x f(x) dx = .                          (D)       f(x) dx = 1.
                    0                 6                               0
                                                                                                    [JEE 2015]

                                                            1
                             192x 3                                         Z  1
                   0
          38. Let f (x) =             for all x ∈ R with f      = 0. If m ≤     f(x) dx ≤ M, then the possible
                                 4
                          2 + sin πx                        2                1/2
              values of m and M are
                                                 1        1
               (A) m = 13, M = 24.     (B) m = , M = .          (C) m = −11, M = 0. (D) m = 1, M = 12.
                                                 4        2
                                                                                                    [JEE 2015]

                                                                                                  2
                                                                                                        4
                                                                                         2
          39. Let M and N be two 3 × 3 matrices such that MN = NM. Further, if M 6= N and M = N , then
                                     2
                                              2
               (A) determinant of (M + MN ) is 0.
                                                                          2
                                                                 2
               (B) there is a 3 × 3 non-zero matrix U such that (M + MN )U is the zero matrix.
                                              2
                                     2
               (C) determinant of (M + MN ) ≥ 1.
                                             2
                                                      2
               (D) for a 3 × 3 matrix U, if (M + MN )U equals the zero matrix then U is the zero matrix.
                                                                                                    [JEE 2014]
          40. For every pair of continuous functions f, g : [0, 1] → R such that
                                       max{f(x) : x ∈ [0, 1]} = max{g(x) : x ∈ [0, 1]},
              the correct statement(s) is (are):

                         2
                                           2
               (A) (f(c)) + 3f(c) = (g(c)) + 3g(c) for some c ∈ [0, 1].
                                          2
                         2
               (B) (f(c)) + f(c) = (g(c)) + 3g(c) for some c ∈ [0, 1].
                         2
                                           2
               (C) (f(c)) + 3f(c) = (g(c)) + g(c) for some c ∈ [0, 1].
                         2
                                   2
               (D) (f(c)) = (g(c)) for some c ∈ [0, 1].
                                                                                                    [JEE 2014]
          41. Let f : (0, ∞) → R be given by
                                                                      1
                                                                      
                                                           x  1        
                                                         Z       −  t+
                                                 f(x) =         e     t  dt.
                                                          1/x  t
              Then

               (A) f(x) is monotonically increasing on [1, ∞).
               (B) f(x) is monotonically decreasing on (0, 1).

                              1
               (C) f(x) + f       = 0, for all x ∈ (0, ∞).
                              x
                       x
               (D) f(2 ) is an odd function of x on R.
                                                                                                    [JEE 2014]
   27   28   29   30   31   32   33   34   35   36   37