Page 74 - IPP-12-2024
P. 74

PRACTICAL FILE
                                       CLASS – XII Informatics Practices with Python

            Program 1:  Write a program to create a pandas series from a dictionary of values and a ndarray.

            Solution:

            import pandas as pd
            dictionary={'A':10,'B':20,'C':30}
            series=pd.Series(dictionary)
            print(series)
            Output:


            A    10

            B    20


            C    30

            dtype: int64

            Program 2. Write a program to combine number of series to form a dataframe.
            Solution:

            import numpy as np
            ser1 = pd.Series(list('abcedfghijklmnopqrstuvwxyz'))
            ser2 = pd.Series(np.arange(26))
            df = pd.concat([ser1, ser2], axis=1)
            df = pd.DataFrame({'col1': ser1, 'col2': ser2})
            print(df.head())
            Output:

                 col1 col2
            0    a     0
            1    b     1
            2    c     2
            3    e     3
            4    d     4

            Program 3:  Write a program to create a DataFrame quarterly sales where each row contains the
            item category, item name, and expenditure. Group the rows by the category, and print the total
            expenditure per category.
            Solution:

               import pandas as pd
               dic={'itemcat':['car','AC','Aircooler','Washing Machine'],
                    'itemname':['Ford','Hitachi','Symphony','LG'],
                    'expenditure':[7000000,5000,12000,14000]}
               quartsales=pd.DataFrame(dic)
               print(quartsales)
               qs=quartsales.groupby('itemcat')
               print('Result after Filtering DataFrame')
               print(qs[['itemcat','expenditure']].sum())
            Output:
                          itemcat               itemname                     expenditure
   69   70   71   72   73   74   75   76   77   78   79