Page 55 - ISC-12
P. 55

8Jai Baba Ki             ISC Mathematics – Class XII by Gupta–Bansal

                                         Paragraph for Question Nos. 35 to 37

          A fair die is tossed repeatedly until a six is obtained. Let X denote the number of tosses required.


          35. The probability that X = 3 equals
                    25                      25                       5                       125
               (A)     .               (B)    .                 (C)    .                (D)      .
                   216                      36                      36                       216

          36. The probability that X ≥ 3 equals
                   125                      25                       5                        25
               (A)     .               (B)    .                 (C)    .                (D)      .
                   216                      36                      36                       216


          37. The conditional probability that X ≥ 6 given X > 3 equals
                   125                      25                       5                       25
               (A)     .               (B)      .               (C)    .                (D)     .
                   216                      216                     36                       36
                                                                                                    [JEE 2009]


                                         Paragraph for Question Nos. 38 to 40


                                                                    3
          Consider the functions defined implicitly by the equation y − 3y + x = 0 on various intervals in the
          real line. If x ∈ (−∞, −2) ∪ (2, ∞), the equation implicitly defines a unique real-valued differentiable
          function y = f(x).
          If x ∈ (−2, 2), the equation implicitly defines a unique real-valued differentiable function y = g(x)
          satisfying g(0) = 0.

                       √       √                √
                                          00
          38. If f(−10 2) = 2 2, then f (−10 2) =
                     √                         √                      √                         √
                   4 2                        4 2                   4 2                        4 2
               (A)      .              (B) −      .             (C)      .              (D) −      .
                                                                      3
                                                                                                3
                     3 2
                                               3 2
                   7 3                        7 3                    7 3                       7 3
          39. The area of the region bounded by the curve y = f(x), the x-axis, and the lines x = a and x = b,
              where −∞ < a < b < −2, is
                      b      x
                   Z
               (A)             2      dx + bf(b) − af(a).
                    a  3[(f(x)) − 1]
                        b       x
                     Z
               (B) −                    dx + bf(b) − af(a).
                                 2
                       a  3[(f(x)) − 1]
                             x
                   Z  b
               (C)             2      dx − bf(b) + af(a).
                    a  3[(f(x)) − 1]
                     Z  b       x
               (D) −                    dx − bf(b) + af(a).
                                 2
                         3[(f(x)) − 1]
                       a
                 1
              Z
                   0
          40.     g (x) dx =
               −1
               (A) 2 g(−1).            (B) 0.                   (C) −2 g(1).            (D) 2 g(1).

                                                                                                    [JEE 2008]
   50   51   52   53   54   55   56   57   58   59   60