Page 69 - ISC-12
P. 69

Matching-List & Matching-Matrix Type                     Jai Baba Ki11

          11. Match the following two lists:

                                                      List-I                                         List-II

                (A) In a triangle XY Z, let a, b and c be the lengths of the sides opposite to the   (p) 1

                                                                      2
                                                                2
                                                           2
                      angles X, Y and Z, respectively. If 2(a − b ) = c and
                          sin (X − Y )
                      λ =              , then possible values of n for which cos (nπλ) = 0
                              sin Z
                      is(are)
                (B)   In a triangle XY Z, let a, b and c be the lengths of the sides opposite to the  (q) 2

                      angles X, Y and Z, respectively. If
                                                                                    a
                      1 + cos 2X − 2 cos 2Y = 2 sin X sin Y , then possible value(s) of  is(are)
                                                                                    b
                               √            √
                                                       ˆ
                                                                  ˆ
                                                ˆ
                                      ˆ ˆ
                                   ˆ
                          2
                (C)   In R , let  3 i + j, i +  3 j and βi + (1 − β)j be the position vectors of     (r)  3
                      X, Y and Z with respect to the origin O, respectively. If the distance of Z
                                                           −−→      −−→     3
                      from the bisector of the acute angle of OX with OY is √ , then possible
                                                                             2
                      value(s) of |β| is(are)
                (D)   Suppose that F(α) denotes the area of the region bounded by x = 0,             (s)  5
                              2
                      x = 2, y = 4x and y = |αx − 1| + |αx − 2| + αx, where α ∈ {0, 1}.
                                                   √
                                                  8 2
                      Then the value(s) of F(α) +     , when α = 0 and α = 1, is(are)
                                                   3
                                                                                                     (t)  6






                                                       (p)  (q)   (r)  (s)   (t)

                                              (A)      p     q     r    s    t


                                              (B)      p     q     r    s    t

                                              (C)      p     q     r    s    t

                                              (D)      p     q     r    s    t



                                                                                                    [JEE 2015]
   64   65   66   67   68   69   70   71   72   73   74