Page 21 - ISC-12
P. 21

18Jai Baba Ki            ISC Mathematics – Class XII by Gupta–Bansal
                    Z
              Then    x n−2 g(x) dx equals


                           n 1−
                   (1 + nx )    1 n
               (A)                + K.
                      n(n − 1)
                           n 1−
                   (1 + nx )    1 n
               (B)                + K.
                       n − 1
                           n 1+
                   (1 + nx )    1 n
               (C)                + K.
                      n(n + 1)
                           n 1+
                   (1 + nx )    1 n
               (D)                + K.
                       n + 1
                                                                                                    [JEE 2007]


          86. Let H 1 , H 2 , . . . , H n be mutually exclusive and exhaustive events with P(H i ) > 0, i = 1, 2, . . . , n. Let
              E be any other event with 0 < P(E) < 1.
              STATEMENT-1: P(H i |E) > P(E|H i ) · P(H i ) for i = 1, 2, . . . , n.
              because
                                n
                               P
              STATEMENT-2:        P(H i ) = 1.
                               i=1
               (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

               (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for
                   Statement-1.
               (C) Statement-1 is True, Statement-2 is False.

               (D) Statement-1 is False, Statement-2 is True.
                                                                                                    [JEE 2007]

                             −→ −→ −→ −→ −→             −→
          87. Let the vectors PQ, QR, RS, ST, TU and UP represent the sides of a regular hexagon.
                               −→       −→   −→
                                                     ~
              STATEMENT-1: PQ × RS + ST            6= 0.
              because
                               −→     −→          −→     −→
                                            ~
                                                               ~
              STATEMENT-2: PQ × RS = 0 and PQ × ST 6= 0.
               (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
               (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for

                   Statement-1.
               (C) Statement-1 is True, Statement-2 is False.
               (D) Statement-1 is False, Statement-2 is True.

                                                                                                    [JEE 2007]


                                                    2
          88. Let F(x) be an indefinite integral of sin x.
              STATEMENT-1: The function F(x) satisfies F(x + π) = F(x) for all real x.

              because
                                  2
                                                 2
              STATEMENT-2: sin (x + π) = sin x for all real x.
               (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
   16   17   18   19   20   21   22   23   24   25   26