Page 16 - ISC-12
P. 16

Single Correct Choice Type                          Jai Baba Ki13

          64. Let g(x) = log f(x), where f(x) is a twice differentiable positive function defined on (0, ∞) such
              that f(x + 1) = x f(x). Then, for N = 1, 2, 3, . . . ,

                                                           1          1
                                                  g 00  N +    − g 00    =
                                                           2          2


                             1    1              1
               (A) −4 1 +      +    + · · · +            .
                             9   25          (2N − 1) 2

                           1    1              1
               (B) 4 1 +     +    + · · · +            .
                           9   25          (2N − 1) 2

                             1    1              1
               (C) −4 1 +      +    + · · · +            .
                             9   25          (2N + 1) 2

                           1    1              1
               (D) 4 1 +     +    + · · · +            .
                           9   25          (2N + 1) 2
                                                                                                    [JEE 2008]

          65. Consider the curves
                                                        2
                                                  C 1 : y = 4x
                                                        2
                                                             2
                                                  C 2 : x + y − 6x + 1 = 0
              Then,

               (A) C 1 and C 2 touch each other only at one point.

               (B) C 1 and C 2 touch each other exactly at two points.
               (C) C 1 and C 2 intersect (but do not touch) at exactly two points.
               (D) C 1 and C 2 neither intersect nor touch each other.

                                                                                                    [JEE 2008]


          66. If 0 < x < 1, then
                                     √
                                                                        −1
                                                                             2
                                                         −1
                                            2
                                       1 + x [{x cos (cot x) + sin (cot x)} − 1]   1/2  =
                       x                                              √                      √
                                                                             2
                                                                                                    2
               (A) √        .          (B) x.                   (C) x 1 + x .           (D)    1 + x .
                     1 + x 2
                                                                                                    [JEE 2008]

                                                                                                            ˆ
          67. The edges of a parallelepiped are of unit length and are parallel to non-coplanar unit vectors ˆa, b, ˆc
              such that
                                                                         1
                                                      ˆ
                                                          ˆ
                                                   ˆ a · b = b · ˆc = ˆc · ˆa =
                                                                         2
              Then, the volume of the parallelepiped is
                                                                    √
                    1                        1                        3                       1
               (A) √ .                 (B)   √ .                (C)     .               (D) √ .
                     2                      2 2                      2                         3

                                                                                                    [JEE 2008]
   11   12   13   14   15   16   17   18   19   20   21