Page 11 - ISC-12
P. 11

8Jai Baba Ki             ISC Mathematics – Class XII by Gupta–Bansal
                              ˆ ~
                                     ˆ
                      ˆ
                          ˆ
                                        ˆ
                                                          ˆ
                                                              ˆ
                                            ˆ
                                                      ˆ
          39. Let ~a = i + j + k, b = i − j + k and ~c = i − j − k be three vectors. A vector ~a in the plane of ~a and
                                         1
              ~ b, whose projection on ~c is √ , is given by
                                          3
                                                                            ˆ
                        ˆ
                                                                       ˆ
                   ˆ
                                                                                ˆ
                             ˆ
               (A) i − 3j + 3k.                                 (B) −3i − 3j − k.
                             ˆ
                                                                    ˆ
                        ˆ
                    ˆ
                                                                              ˆ
                                                                         ˆ
               (C) 3i − j + 3k.                                 (D) i + 3j − 3k.
                                                                                                    [JEE 2011]
          40. Let ω 6= 1 be a cube root of unity and S be the set of all non-singular matrices of the form
                                                                  
                                                           1   a b
                                                         ω    1 c
                                                        
                                                                   
                                                          ω 2  ω 1
                                                     2
              where each of a, b, and c is either ω or ω . Then the number of distinct matrices in the set S is
               (A) 2.                                           (B) 6.
               (C) 4.                                           (D) 8.
                                                                                                    [JEE 2011]
          41. Let f : [−1, 2] → [0, ∞) be a continuous function such that f(x) = f(1 − x) for all x ∈ [−1, 2]. Let
                       2
                    Z
              R 1 =     f(x) dx, and R 2 be the area of the region bounded by y = f(x), x = −1, x = 2, and the
                      −1
              x-axis. Then
               (A) R 1 = 2R 2 .        (B) R 1 = 3R 2 .         (C) 2R 1 = R 2 .        (D) 3R 1 = R 2 .

                                                                                                    [JEE 2011]


                           2
          42. Let f(x) = x and g(x) = sin x for all x ∈ R. Then the set of all x satisfying
                                              (f ◦ g ◦ g ◦ f)(x) = (g ◦ g ◦ f)(x),

              where (f ◦ g)(x) = f(g(x)), is
                     √                                                √
               (A) ± nπ, n ∈ {0, 1, 2, . . .}.                  (B) ± nπ, n ∈ {1, 2, . . .}.
                   π
               (C)    + 2nπ, n ∈ {. . . , −2, −1, 0, 1, 2, . . .}.  (D) 2nπ, n ∈ {. . . , −2, −1, 0, 1, 2, . . .}.
                    2

                                                                                                    [JEE 2011]

          43. Let f : (0, 1) → R be defined by
                                                                b − x
                                                       f(x) =         ,
                                                               1 − bx

              where b is a constant such that 0 < b < 1. Then
                                                                                                    1
                                                                                           0
               (A) f is not invertible on (0, 1).               (B) f 6= f  −1  on (0, 1) and f (b) =  .
                                                                                                    0
                                                                                                  f (0)
                                                   1
                                          0
               (C) f = f  −1  on (0, 1) and f (b) =   .         (D) f  −1  is differentiable on (0, 1).
                                                  0
                                                 f (0)
                                                                                                    [JEE 2011]
   6   7   8   9   10   11   12   13   14   15   16