Page 15 - ISC-12
P. 15

12Jai Baba Ki            ISC Mathematics – Class XII by Gupta–Bansal
                                                           r                   r
                                                             1 + sin x            1 − sin x
          60. The area of the region between the curves y =            and y =             bounded by the lines
                                                               cos x                cos x
                             π
              x = 0 and x =    is
                             4
                      √
                   Z   2−1        t
               (A)                √        dt.
                                 2
                    0      (1 + t ) 1 − t 2
                      √
                   Z   2−1       4t
               (B)                √        dt.
                                 2
                    0      (1 + t ) 1 − t 2
                      √
                       2+1       4t
                   Z
               (C)                √        dt.
                                 2
                    0      (1 + t ) 1 − t 2
                      √
                       2+1        t
                   Z
               (D)                √        dt.
                                 2
                    0      (1 + t ) 1 − t 2
                                                                                                    [JEE 2008]
          61. An experiment has 10 equally likely outcomes. Let A and B be two non-empty events of the
              experiment. If A consists of 4 outcomes, the number of outcomes that B must have so that A and
              B are independent, is

               (A) 2, 4 or 8.                                   (B) 3, 6 or 9.

               (C) 4 or 8.                                      (D) 5 or 10.

                                                                                                    [JEE 2008]

                                                     ˆ
          62. Let two non-collinear unit vectors ˆa and b form an acute angle. A point P moves so that at any time t
                                 −→
                                                                                ˆ
              the position vector OP (where O is the origin) is given by ˆa cos t + b sin t. When P is farthest from
                                             −→                                −→
              origin O, let M be the length of OP and ˆu be the unit vector along OP. Then,
                             ˆ
                                                                              ˆ
                         ˆ a + b                                          ˆ a − b
                                                                                                  ˆ 1/2
                                                 ˆ 1/2
               (A) ˆu =        and M = (1 + ˆa · b)  .          (B) ˆu =        and M = (1 + ˆa · b)   .
                             ˆ
                                                                              ˆ
                        |ˆa + b|                                         |ˆa − b|
                                                                              ˆ
                             ˆ
                         ˆ a + b                                          ˆ a − b
                                                                                                   ˆ 1/2
                                                  ˆ 1/2
               (C) ˆu =        and M = (1 + 2ˆa · b)  .         (D) ˆu =        and M = (1 + 2ˆa · b)   .
                                                                              ˆ
                             ˆ
                        |ˆa + b|                                         |ˆa − b|
                                                                                                    [JEE 2008]
          63. Let
                                                e                           e
                                        Z        x                 Z         −x
                                   I =                   dx,   J =                     dx.
                                           e 4x  + e 2x  + 1          e −4x  + e −2x  + 1
              Then, for an arbitrary constant C , the value of J − I equals
                            4x   2x                                          2x   x
                   1      e   − e   + 1                              1     e   + e + 1
               (A)   log                 + C.                   (B)   log                + C.
                                                                                  x
                   2      e 4x  + e 2x  + 1                          2     e 2x  − e + 1
                            2x   x                                           4x   2x
                   1      e   − e + 1                                1     e   + e   + 1
               (C)   log                + C.                    (D)   log                 + C.
                                 x
                   2      e 2x  + e + 1                              2     e 4x  − e 2x  + 1
                                                                                                    [JEE 2008]
   10   11   12   13   14   15   16   17   18   19   20